論文の概要: A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods
- arxiv url: http://arxiv.org/abs/2311.07513v1
- Date: Mon, 13 Nov 2023 17:56:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 13:07:48.304567
- Title: A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods
- Title(参考訳): 金融時系列予測のためのAIベースのシステムのためのグッドプラクティスに関する仮説:ドメイン駆動型XAI手法に向けて
- Authors: Branka Hadji Misheva and Joerg Osterrieder
- Abstract要約: 機械学習とディープラーニングは、財務予測や予測タスクでますます普及している。
これらのモデルは透明性と解釈可能性に欠けることが多く、金融のような繊細なドメインでの使用を困難にしている。
本稿では、金融のためのAIベースのシステムに説明可能性を展開するための優れた実践について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning and deep learning have become increasingly prevalent in
financial prediction and forecasting tasks, offering advantages such as
enhanced customer experience, democratising financial services, improving
consumer protection, and enhancing risk management. However, these complex
models often lack transparency and interpretability, making them challenging to
use in sensitive domains like finance. This has led to the rise of eXplainable
Artificial Intelligence (XAI) methods aimed at creating models that are easily
understood by humans. Classical XAI methods, such as LIME and SHAP, have been
developed to provide explanations for complex models. While these methods have
made significant contributions, they also have limitations, including
computational complexity, inherent model bias, sensitivity to data sampling,
and challenges in dealing with feature dependence. In this context, this paper
explores good practices for deploying explainability in AI-based systems for
finance, emphasising the importance of data quality, audience-specific methods,
consideration of data properties, and the stability of explanations. These
practices aim to address the unique challenges and requirements of the
financial industry and guide the development of effective XAI tools.
- Abstract(参考訳): マシンラーニングとディープラーニングは、顧客エクスペリエンスの向上、金融サービスの民主化、消費者保護の改善、リスク管理の強化など、金融予測や予測タスクでますます普及している。
しかしながら、これらの複雑なモデルは透明性と解釈可能性に欠けることが多く、金融のような繊細なドメインでの使用は困難である。
これは、人間が容易に理解できるモデルを作成することを目的としたeXplainable Artificial Intelligence(XAI)メソッドの台頭につながった。
LIMEやSHAPといった古典的なXAI手法は、複雑なモデルを説明するために開発された。
これらの手法は大きな貢献をしているが、計算複雑性、固有のモデルバイアス、データサンプリングに対する感度、機能依存を扱う際の課題など、制限もある。
本稿では,データ品質の重要性,オーディエンス固有の手法,データ特性の考慮,説明の安定性を重視し,AIベースの金融システムに説明可能性を展開するための優れた実践について考察する。
これらのプラクティスは、金融業界のユニークな課題や要件に対処し、効果的なXAIツールの開発を導くことを目的としています。
関連論文リスト
- Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction [5.417632175667161]
説明可能な人工知能(XAI)は、これらのモデルがどのように意思決定や予測を行うかを説明することによって、課題に対処する。
既存の研究では、XAIの基本概念、その一般的原理、およびXAI技術の範囲について検討されている。
本稿では、共通用語と定義、XAIの必要性、XAIの受益者の必要性、XAI手法の分類、および異なる応用分野におけるXAI手法の適用に関する総合的な文献レビューを提供する。
論文 参考訳(メタデータ) (2024-08-30T21:42:17Z) - A Survey of Explainable Artificial Intelligence (XAI) in Financial Time Series Forecasting [1.2937020918620652]
eXplainable AI(XAI)の分野は、AIモデルをより理解しやすくすることを目指している。
本稿では、金融時系列を予測するXAIアプローチを分類する。
金融におけるXAIの現在の役割を包括的に把握している。
論文 参考訳(メタデータ) (2024-07-22T17:06:19Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - A Comprehensive Review on Financial Explainable AI [29.229196780505532]
金融の文脈における深層学習モデルの説明可能性向上を目的とした手法の比較調査を行う。
説明可能なAI手法のコレクションは,その特性に応じて分類する。
我々は、説明可能なAI手法を採用する際の懸念と課題を、適切かつ重要と考えられる今後の方向性とともにレビューする。
論文 参考訳(メタデータ) (2023-09-21T10:30:49Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - A Time Series Approach to Explainability for Neural Nets with
Applications to Risk-Management and Fraud Detection [0.0]
技術に対する信頼は、予測の背後にある根拠を理解することによって実現される。
横断的なデータの場合、古典的なXAIアプローチはモデルの内部動作に関する貴重な洞察をもたらす可能性がある。
本稿では、データの自然時間順序を保存・活用する深層学習のための新しいXAI手法を提案する。
論文 参考訳(メタデータ) (2022-12-06T12:04:01Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。