Controlling nonlocality of bipartite qubit states via quantum channels
- URL: http://arxiv.org/abs/2407.16035v1
- Date: Mon, 22 Jul 2024 20:21:26 GMT
- Title: Controlling nonlocality of bipartite qubit states via quantum channels
- Authors: Adam Rutkowski, Katarzyna Siudzińska,
- Abstract summary: It focuses on qubit channels corresponding to two-qubit circulant states that satisfy Bell's nonlocality condition.
The study reveals interesting geometric properties of quantum channels, contributing to the field of quantum nonlocality.
- Score: 0.6906005491572401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores geometric aspects of the inverse Choi-Jamio{\l}kowski isomorphism. It focuses on qubit channels corresponding to two-qubit circulant states that satisfy Bell's nonlocality condition. The main part is devoted to a characterization of nonlocality generating maps on the examples of both unital and non-unital maps. The advantage of this approach is that nonlocality of bipartite states can be controlled with a single parameter. The study reveals interesting geometric properties of quantum channels, contributing to the field of quantum nonlocality.
Related papers
- Cavity Control of Topological Qubits: Fusion Rule, Anyon Braiding and Majorana-Schrödinger Cat States [39.58317527488534]
We investigate the impact of introducing a local cavity within the center of a topological chain.
This cavity induces a scissor-like effect that bisects the chain, liberating Majorana zero modes (MZMs) within the bulk.
By leveraging the symmetry properties of fermion modes within a two-site cavity, we propose a novel method for generating MZM-polariton Schr"odinger cat states.
arXiv Detail & Related papers (2024-09-06T18:00:00Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Certifying nonlocal properties of noisy quantum operations [0.0]
We provide a unified framework to certify nonlocal properties of quantum channels from the correlations obtained in measurement protocols.
We study the effect of different models of dephasing noise, some of which are shown to generate nonlocality and entanglement in special cases.
arXiv Detail & Related papers (2024-07-02T18:00:06Z) - Fractional quantum Hall states with variational Projected Entangled-Pair
States: a study of the bosonic Harper-Hofstadter model [0.0]
We show that the infinite projected-entangled pair states can be used to identify fractional Hall states in the bosonic Harper-Hofstadter model.
The obtained states are characterized by showing exponential decay of bulk correlations, as dictated by a bulk gap, as well as chiral edge modes via the entanglement spectrum.
arXiv Detail & Related papers (2023-09-22T11:54:43Z) - Intrinsic Mixed-state Quantum Topological Order [4.41737598556146]
We show that decoherence can give rise to new types of topological order.
We construct concrete examples by proliferating fermionic anyons in the toric code via local quantum channels.
The resulting mixed states retain long-range entanglement, which manifests in the nonzero topological entanglement negativity.
arXiv Detail & Related papers (2023-07-25T18:34:10Z) - Geometric Visualizations of Single and Entangled Qubits [1.5624421399300306]
We create maps of subspaces of 1- and 2-qubit systems that encode properties of these states in their geometries.
These maps may prove particularly useful for understanding fundamental concepts of quantum mechanics and quantum information at the introductory level.
arXiv Detail & Related papers (2022-12-07T04:05:28Z) - Faithfulness and sensitivity for ancilla-assisted process tomography [0.0]
A system-ancilla bipartite state capable of containing the complete information of an unknown quantum channel acting on the system is called faithful.
We complete the proof of the equivalence and introduce the generalization of faithfulness to various classes of quantum channels.
arXiv Detail & Related papers (2022-06-13T04:19:22Z) - Proofs of network quantum nonlocality aided by machine learning [68.8204255655161]
We show that the family of quantum triangle distributions of [DOI40103/PhysRevLett.123.140] did not admit triangle-local models in a larger range than the original proof.
We produce a large collection of network Bell inequalities for the triangle scenario with binary outcomes, which are of independent interest.
arXiv Detail & Related papers (2022-03-30T18:00:00Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.