Geometric Visualizations of Single and Entangled Qubits
- URL: http://arxiv.org/abs/2212.03448v2
- Date: Thu, 30 May 2024 16:37:34 GMT
- Title: Geometric Visualizations of Single and Entangled Qubits
- Authors: Li-Heng Henry Chang, Shea Roccaforte, Ziyu Xu, Paul Cadden-Zimansky,
- Abstract summary: We create maps of subspaces of 1- and 2-qubit systems that encode properties of these states in their geometries.
These maps may prove particularly useful for understanding fundamental concepts of quantum mechanics and quantum information at the introductory level.
- Score: 1.5624421399300306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Bloch Sphere visualization of the possible states of a single qubit has proved a useful pedagogical and conceptual tool as a one-to-one map between qubit states and points in a 3-D space. However, understanding many important concepts of quantum mechanics, such as entanglement, requires developing intuitions about states with a minimum of two qubits, which map one-to-one to unvisualizable spaces of 6 dimensions and higher. In this paper we circumvent this visualization issue by creating maps of subspaces of 1- and 2-qubit systems that quantitatively and qualitatively encode properties of these states in their geometries. For the 1-qubit case, the subspace approach allows one to visualize how mixed states relate to different choices of measurement in a basis-independent way and how to read off the entries in a density matrix representation of these states from lengths in a simple diagram. For the 2-qubit case, a toroidal map of 2-qubit states illuminates the non-trivial topology of the state space while allowing one to simultaneously read off, in distances and angles, the level of entanglement in the 2-qubit state and the mixed-state properties of its constituent qubits. By encoding states and their evolutions through quantum logic gates with little to no need of mathematical formalism, these maps may prove particularly useful for understanding fundamental concepts of quantum mechanics and quantum information at the introductory level. Interactive versions of the visualizations introduced in this paper are available at https://quantum.bard.edu/.
Related papers
- Many-body quantum resources of graph states [0.0]
Characterizing the non-classical correlations of a complex many-body system is an important part of quantum technologies.
We consider four topologies, namely the star graph states with edges, Tur'an graphs, $r$-ary tree graphs, and square grid cluster states.
We characterize many-body entanglement depth in graph states with up to $8$ qubits in $146$ classes non-equivalent under local transformations and graph isomorphisms.
arXiv Detail & Related papers (2024-10-16T12:05:19Z) - An explicit tensor notation for quantum computing [0.0]
This paper introduces a formalism that aims to describe the intricacies of quantum computation.
The focus is on providing a comprehensive representation of quantum states for multiple qubits and the quantum gates that manipulate them.
arXiv Detail & Related papers (2024-09-16T17:21:17Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Bloch Sphere Binary Trees: A method for the visualization of sets of
multi-qubit systems pure states [0.0]
We present a mapping that can uniquely represent a set of arbitrary multi-qubit pure states on what we call a Binary Tree of Bloch Spheres.
The backbone of this technique is the combination of the Schmidt decomposition and the Bloch sphere representation.
We illustrate how this can be used in the context of understanding the time evolution of quantum states.
arXiv Detail & Related papers (2023-02-06T17:39:19Z) - Schr\"odinger cat states of a 16-microgram mechanical oscillator [54.35850218188371]
The superposition principle is one of the most fundamental principles of quantum mechanics.
Here we demonstrate the preparation of a mechanical resonator with an effective mass of 16.2 micrograms in Schr"odinger cat states of motion.
We show control over the size and phase of the superposition and investigate the decoherence dynamics of these states.
arXiv Detail & Related papers (2022-11-01T13:29:44Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - The shape of higher-dimensional state space: Bloch-ball analog for a
qutrit [0.0]
We show that it is possible to construct a three dimensional model for the qutrit state space.
Besides being of indisputable theoretical value, this opens the door to a new type of representation.
arXiv Detail & Related papers (2020-12-01T15:57:13Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Fuzzy measurements and coarse graining in quantum many-body systems [0.0]
We provide a framework to construct fuzzy and coarse grained quantum states of many-body systems.
We show that the volume of the tomographically accessible states decreases at a double exponential rate in the number of particles.
arXiv Detail & Related papers (2020-11-06T00:21:47Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.