Universal Spectral Transfer with Physical Prior-Informed Deep Generative Learning
- URL: http://arxiv.org/abs/2407.16094v1
- Date: Mon, 22 Jul 2024 23:31:10 GMT
- Title: Universal Spectral Transfer with Physical Prior-Informed Deep Generative Learning
- Authors: Yanmin Zhu, Loza F. Tadesse,
- Abstract summary: We introduce SpectroGen, a novel physical prior-informed deep generative model for generating relevant spectral signatures.
Results show generating with 99% correlation and 0.01 root mean square error with superior resolution than experimentally acquired ground truth spectra.
- Score: 9.603403541272746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spectroscopy is a powerful analytical technique for characterizing matter across physical and biological realms1-5. However, its fundamental principle necessitates specialized instrumentation per physical phenomena probed, limiting broad adoption and use in all relevant research. In this study, we introduce SpectroGen, a novel physical prior-informed deep generative model for generating relevant spectral signatures across modalities using experimentally collected spectral input only from a single modality. We achieve this by reimagining the representation of spectral data as mathematical constructs of distributions instead of their traditional physical and molecular state representations. The results from 319 standard mineral samples tested demonstrate generating with 99% correlation and 0.01 root mean square error with superior resolution than experimentally acquired ground truth spectra. We showed transferring capability across Raman, Infrared, and X-ray Diffraction modalities with Gaussian, Lorentzian, and Voigt distribution priors respectively6-10. This approach however is globally generalizable for any spectral input that can be represented by a distribution prior, making it universally applicable. We believe our work revolutionizes the application sphere of spectroscopy, which has traditionally been limited by access to the required sophisticated and often expensive equipment towards accelerating material, pharmaceutical, and biological discoveries.
Related papers
- Point-Calibrated Spectral Neural Operators [54.13671100638092]
We introduce Point-Calibrated Spectral Transform, which learns operator mappings by approximating functions with the point-level adaptive spectral basis.
Point-Calibrated Spectral Neural Operators learn operator mappings by approximating functions with the point-level adaptive spectral basis.
arXiv Detail & Related papers (2024-10-15T08:19:39Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
We introduce a novel deep learning framework, called Distributional Graphormer (DiG), in an attempt to predict the equilibrium distribution of molecular systems.
DiG employs deep neural networks to transform a simple distribution towards the equilibrium distribution, conditioned on a descriptor of a molecular system.
arXiv Detail & Related papers (2023-06-08T17:12:08Z) - RamanNet: A generalized neural network architecture for Raman Spectrum
Analysis [4.670045009583903]
Raman spectroscopy provides a vibrational profile of the molecules and can be used to identify different kind of materials.
Despite the recent rise in Raman spectra data volume, there has not been any significant effort in developing generalized machine learning methods for Raman spectra analysis.
We examine, experiment and evaluate existing methods and conjecture that neither current sequential models nor traditional machine learning models are satisfactorily sufficient to analyze Raman spectra.
arXiv Detail & Related papers (2022-01-20T23:15:25Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Cycle-StarNet: Bridging the gap between theory and data by leveraging
large datasets [0.0]
Current automated methods for analyzing spectra are either (a) data-driven, which requires prior knowledge of stellar parameters and elemental abundances, or (b) based on theoretical synthetic models that are susceptible to the gap between theory and practice.
We present a hybrid generative domain adaptation method that turns simulated stellar spectra into realistic spectra by applying unsupervised learning to large spectroscopic surveys.
arXiv Detail & Related papers (2020-07-06T23:06:58Z) - A Review of 1D Convolutional Neural Networks toward Unknown Substance
Identification in Portable Raman Spectrometer [0.0]
Raman spectroscopy is a powerful analytical tool with applications ranging from quality control to cutting edge biomedical research.
They have been adopted widely by first responders and law enforcement agencies for the field analysis of unknown substances.
Field detection and identification of unknown substances with Raman spectroscopy rely heavily on the spectral matching capability of the devices on hand.
arXiv Detail & Related papers (2020-06-18T14:28:00Z) - Phase-sensitive nuclear target spectroscopy (PHANTASY) [0.0]
M"ossbauer nuclei feature exceptionally narrow resonances at hard x-ray energies.
Direct spectroscopy at modern x-ray sources is challenging because of the broad spectral bandwidth of the delivered x-ray pulses.
arXiv Detail & Related papers (2020-03-22T09:49:54Z) - Deep Neural Networks for the Correction of Mie Scattering in
Fourier-Transformed Infrared Spectra of Biological Samples [0.0]
We propose an approach to approximate this complex preprocessing function using deep neural networks.
Our proposed method overcomes the trade-off between time and the corrected spectrum being biased towards an artificial reference spectrum.
arXiv Detail & Related papers (2020-02-18T16:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.