論文の概要: Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision
- arxiv url: http://arxiv.org/abs/2407.16102v1
- Date: Tue, 23 Jul 2024 00:04:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 19:05:22.003732
- Title: Augmented Efficiency: Reducing Memory Footprint and Accelerating Inference for 3D Semantic Segmentation through Hybrid Vision
- Title(参考訳): 拡張効率:ハイブリッドビジョンによる3次元セマンティックセグメンテーションにおけるメモリフットプリントの削減と推論の高速化
- Authors: Aditya Krishnan, Jayneel Vora, Prasant Mohapatra,
- Abstract要約: 本稿では,2次元と3次元のコンピュータビジョン技術を組み合わせた3次元セマンティックセグメンテーションの新たなアプローチを提案する。
我々は3次元点雲にリンクしたRGB画像に対して2Dセマンティックセマンティックセマンティックセマンティクスを行い、その結果をクラスラベルの押出手法を用いて3Dに拡張する。
このモデルは、KITTI-360データセット上の最先端の3Dセマンティックセマンティックセグメンテーションモデルとして機能する。
- 参考スコア(独自算出の注目度): 9.96433151449016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation has emerged as a pivotal area of study in computer vision, offering profound implications for scene understanding and elevating human-machine interactions across various domains. While 2D semantic segmentation has witnessed significant strides in the form of lightweight, high-precision models, transitioning to 3D semantic segmentation poses distinct challenges. Our research focuses on achieving efficiency and lightweight design for 3D semantic segmentation models, similar to those achieved for 2D models. Such a design impacts applications of 3D semantic segmentation where memory and latency are of concern. This paper introduces a novel approach to 3D semantic segmentation, distinguished by incorporating a hybrid blend of 2D and 3D computer vision techniques, enabling a streamlined, efficient process. We conduct 2D semantic segmentation on RGB images linked to 3D point clouds and extend the results to 3D using an extrusion technique for specific class labels, reducing the point cloud subspace. We perform rigorous evaluations with the DeepViewAgg model on the complete point cloud as our baseline by measuring the Intersection over Union (IoU) accuracy, inference time latency, and memory consumption. This model serves as the current state-of-the-art 3D semantic segmentation model on the KITTI-360 dataset. We can achieve heightened accuracy outcomes, surpassing the baseline for 6 out of the 15 classes while maintaining a marginal 1% deviation below the baseline for the remaining class labels. Our segmentation approach demonstrates a 1.347x speedup and about a 43% reduced memory usage compared to the baseline.
- Abstract(参考訳): セマンティックセグメンテーション(Semantic segmentation)はコンピュータビジョンにおける重要な研究領域として現れ、シーン理解と様々な領域における人間と機械の相互作用の高揚に深く影響している。
2Dセマンティックセグメンテーションは、軽量で高精度なモデルという形で大きな進歩を遂げてきたが、3Dセマンティックセグメンテーションへの移行は異なる課題をもたらす。
本研究は,3次元セマンティックセグメンテーションモデルの効率性と軽量化に焦点をあてる。
このような設計は、メモリとレイテンシが懸念される3Dセマンティックセグメンテーションの応用に影響を与える。
本稿では,2次元と3次元のコンピュータビジョン技術を組み合わせた3次元セマンティックセグメンテーション手法を提案する。
3D 点クラウドにリンクした RGB 画像に対して 2D セマンティックセマンティックセマンティックセマンティクスを行い,その結果をクラスラベルの押出法を用いて 3D に拡張し,点クラウド部分空間を小さくする。
We performed rigorous evaluation with the DeepViewAgg model on the complete point cloud as our baseline by measured the Intersection over Union (IoU) accuracy, inference time latency, and memory consumption。
このモデルは、KITTI-360データセット上の最先端の3Dセマンティックセマンティックセグメンテーションモデルとして機能する。
その結果,15クラス中6クラスのベースラインを上回り,残りのクラスラベルのベースライン以下では1%の差を保ちながら,精度の向上を実現できた。
我々のセグメンテーションアプローチは、ベースラインに比べて1.347倍のスピードアップと約43%のメモリ使用量の削減を示している。
関連論文リスト
- Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - CLIP-GS: CLIP-Informed Gaussian Splatting for Real-time and View-consistent 3D Semantic Understanding [32.76277160013881]
コントラスト言語画像事前学習(CLIP)のセマンティクスをガウススプラッティングに統合するCLIP-GSを提案する。
SACはオブジェクト内の固有の統一意味論を利用して、3Dガウスのコンパクトで効果的な意味表現を学ぶ。
また,3次元モデルから得られた多視点一貫性を利用して,3次元コヒーレント自己学習(3DCS)戦略を導入する。
論文 参考訳(メタデータ) (2024-04-22T15:01:32Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
新規なゼロショット3Dインスタンスセグメンテーション手法であるSAI3Dを紹介する。
我々の手法は3Dシーンを幾何学的プリミティブに分割し、段階的に3Dインスタンスセグメンテーションにマージする。
ScanNet、Matterport3D、さらに難しいScanNet++データセットに関する実証的な評価は、我々のアプローチの優位性を示している。
論文 参考訳(メタデータ) (2023-12-17T09:05:47Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance
Fields [73.97131748433212]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - OccuSeg: Occupancy-aware 3D Instance Segmentation [39.71517989569514]
3D占有サイズ」とは、各インスタンスが占有するボクセルの数である。
OccuSegは、3Dインスタンスのセグメンテーションスキームである。
3つの実世界のデータセット上での“最先端のパフォーマンス”。
論文 参考訳(メタデータ) (2020-03-14T02:48:55Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
多数の点を効率的に扱うために,注目度に基づくアトラス畳み込みニューラルネットワークアーキテクチャを提案する。
提案モデルは,3次元セマンティックセグメンテーションタスクにおいて,最も重要な2つの3Dポイントクラウドデータセット上で評価されている。
精度の面では最先端モデルと比較して妥当な性能を達成し、パラメータの数ははるかに少ない。
論文 参考訳(メタデータ) (2019-12-27T13:12:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。