論文の概要: Users Feel Guilty: Measurement of Illegal Software Installation Guide Videos on YouTube for Malware Distribution
- arxiv url: http://arxiv.org/abs/2407.16132v1
- Date: Tue, 23 Jul 2024 02:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:55:32.849710
- Title: Users Feel Guilty: Measurement of Illegal Software Installation Guide Videos on YouTube for Malware Distribution
- Title(参考訳): ユーザは罪悪感を感じている: マルウェア配布のためのYouTube上の違法ソフトウェアインストールガイドビデオの測定
- Authors: Rei Yamagishi, Shota Fujii, Tatsuya Mori,
- Abstract要約: 本研究では,人気ビデオ共有プラットフォームを活用した高度なマルウェア配布手法を紹介し,検討する。
この攻撃では、脅威アクターは、プレミアムソフトウェアとゲーム不正の無料バージョンを約束する偽のコンテンツを通じてマルウェアを配布する。
MalTubeはユーザーの罪悪感を悪用し、違法行為の可能性がある。
- 参考スコア(独自算出の注目度): 3.0664883500280986
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study introduces and examines a sophisticated malware distribution technique that exploits popular video sharing platforms. In this attack, threat actors distribute malware through deceptive content that promises free versions of premium software and game cheats. Throughout this paper, we call this attack MalTube. MalTube is particularly insidious because it exploits the guilt feelings of users for engaging in potentially illegal activity, making them less likely to report the infection or ask for a help. To investigate this emerging threat, we developed video platform exploitation reconnaissance VIPER, a novel monitoring system designed to detect, monitor, and analyze MalTube activity at scale. Over a four-month data collection period, VIPER processed and analyzed 14,363 videos, 8,671 associated channels, and 1,269 unique fully qualified domain names associated with malware downloads. Our findings reveal that MalTube attackers primarily target young gamers, using the lure of free software and game cheats as infection vectors. The attackers employ various sophisticated social engineering techniques to maximize user engagement and ensure successful malware propagation. These techniques include the strategic use of platform-specific features such as trending keywords, emoticons, and eye-catching thumbnails. These tactics closely mimic legitimate content creation strategies while providing detailed instructions for malware infection. Based on our in-depth analysis, we propose a set of robust detection and mitigation strategies that exploit the invariant characteristics of MalTube videos, offering the potential for automated threat detection and prevention.
- Abstract(参考訳): 本研究では,人気ビデオ共有プラットフォームを活用した高度なマルウェア配布手法を紹介し,検討する。
この攻撃では、脅威アクターは、プレミアムソフトウェアとゲーム不正の無料バージョンを約束する偽のコンテンツを通じてマルウェアを配布する。
本稿では,この攻撃をMalTubeと呼ぶ。
MalTubeは、違法行為の可能性を秘めているユーザーの罪悪感を悪用し、感染を報告したり、助けを求める機会を減らしている。
そこで我々は,MalTubeの大規模活動を検出し,監視し,分析する新しい監視システムである,ビデオプラットフォーム利用偵察VIPERを開発した。
4ヶ月にわたるデータ収集期間において、VIPERは14,363の動画、8,671の関連チャンネル、1,269のユニークな完全に資格のあるドメイン名をマルウェアのダウンロードに関連づけて処理し分析した。
この結果,MalTube攻撃者は主に若手ゲーマーを対象としており,フリーソフトウェアとゲーム不正を感染ベクトルとして用いていることがわかった。
攻撃者は、ユーザエンゲージメントを最大化し、マルウェアの伝播を成功させるために、様々な高度なソーシャルエンジニアリング技術を使用している。
これらの手法には、トレンドキーワード、エモティコン、アイキャッチサムネイルなどのプラットフォーム固有の特徴の戦略的利用が含まれる。
これらの戦略は、マルウェア感染の詳細な指示を提供しながら、正当なコンテンツ作成戦略を忠実に模倣している。
詳細な分析に基づいて,MalTubeビデオの不変特性を利用した堅牢な検出・緩和戦略を提案し,自動脅威検出・防止の可能性を秘めている。
関連論文リスト
- Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis [0.0]
本稿では,メモリダンプ解析による簡易かつ費用対効果の高いマルウェア検出システムを提案する。
この研究は、現実世界のシナリオをシミュレートするために設計されたCIC-MalMem-2022データセットに焦点を当てている。
メモリダンプ内の難読化マルウェアの検出において,決定木,アンサンブル法,ニューラルネットワークなどの機械学習アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-03T00:13:23Z) - Burning the Adversarial Bridges: Robust Windows Malware Detection
Against Binary-level Mutations [16.267773730329207]
そこで本研究では,バイナリレベルのブラックボックス攻撃マルウェアの実例の根本原因分析を行った。
我々は、ソフトウェア内の揮発性情報チャネルを強調し、攻撃面を排除するために3つのソフトウェア前処理手順を導入する。
新たなセクションインジェクション攻撃に対抗するために,グラフに基づくセクション依存情報抽出手法を提案する。
論文 参考訳(メタデータ) (2023-10-05T03:28:02Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Adversarial Attacks against Windows PE Malware Detection: A Survey of
the State-of-the-Art [44.975088044180374]
本稿は,Windowsオペレーティングシステム,すなわちWindows PEのファイル形式である,ポータブル実行可能(PE)のファイル形式に焦点をあてる。
まず、ML/DLに基づくWindows PEマルウェア検出の一般的な学習フレームワークについて概説する。
次に、PEマルウェアのコンテキストにおいて、敵攻撃を行うという3つのユニークな課題を強調した。
論文 参考訳(メタデータ) (2021-12-23T02:12:43Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
マルウェアのバイナリイメージを使用して、異なる特徴を抽出し、得られたデータセットに異なるML分類器を用いる。
本手法は,抽出した特徴に基づくマルウェアの分類に成功していることを示す。
論文 参考訳(メタデータ) (2021-04-14T06:55:52Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。