論文の概要: Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis
- arxiv url: http://arxiv.org/abs/2404.02372v1
- Date: Wed, 3 Apr 2024 00:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 18:59:11.118508
- Title: Obfuscated Malware Detection: Investigating Real-world Scenarios through Memory Analysis
- Title(参考訳): 難読マルウェア検出:メモリ分析による実世界のシナリオの調査
- Authors: S M Rakib Hasan, Aakar Dhakal,
- Abstract要約: 本稿では,メモリダンプ解析による簡易かつ費用対効果の高いマルウェア検出システムを提案する。
この研究は、現実世界のシナリオをシミュレートするために設計されたCIC-MalMem-2022データセットに焦点を当てている。
メモリダンプ内の難読化マルウェアの検出において,決定木,アンサンブル法,ニューラルネットワークなどの機械学習アルゴリズムの有効性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the era of the internet and smart devices, the detection of malware has become crucial for system security. Malware authors increasingly employ obfuscation techniques to evade advanced security solutions, making it challenging to detect and eliminate threats. Obfuscated malware, adept at hiding itself, poses a significant risk to various platforms, including computers, mobile devices, and IoT devices. Conventional methods like heuristic-based or signature-based systems struggle against this type of malware, as it leaves no discernible traces on the system. In this research, we propose a simple and cost-effective obfuscated malware detection system through memory dump analysis, utilizing diverse machine-learning algorithms. The study focuses on the CIC-MalMem-2022 dataset, designed to simulate real-world scenarios and assess memory-based obfuscated malware detection. We evaluate the effectiveness of machine learning algorithms, such as decision trees, ensemble methods, and neural networks, in detecting obfuscated malware within memory dumps. Our analysis spans multiple malware categories, providing insights into algorithmic strengths and limitations. By offering a comprehensive assessment of machine learning algorithms for obfuscated malware detection through memory analysis, this paper contributes to ongoing efforts to enhance cybersecurity and fortify digital ecosystems against evolving and sophisticated malware threats. The source code is made open-access for reproducibility and future research endeavours. It can be accessed at https://bit.ly/MalMemCode.
- Abstract(参考訳): インターネットやスマートデバイスの時代、マルウェアの検出はシステムのセキュリティにとって重要になっている。
マルウェアの作者は、高度なセキュリティソリューションを避けるために難読化技術を採用しており、脅威を検出して排除することは困難である。
隠れたマルウェアは、コンピュータ、モバイルデバイス、IoTデバイスなど、さまざまなプラットフォームに重大なリスクをもたらす。
ヒューリスティックベースのシステムやシグネチャベースのシステムのような従来の手法は、システムに識別可能な痕跡を残していないため、この種のマルウェアと競合する。
本研究では,多様な機械学習アルゴリズムを用いて,メモリダンプ解析による簡易かつ費用対効果の高いマルウェア検出システムを提案する。
この研究は、実際のシナリオをシミュレートし、メモリベースの難読化マルウェア検出を評価するために設計されたCIC-MalMem-2022データセットに焦点を当てている。
メモリダンプ内の難読化マルウェアの検出において,決定木,アンサンブル法,ニューラルネットワークなどの機械学習アルゴリズムの有効性を評価する。
我々の分析は、アルゴリズムの強みと制限に関する洞察を提供する複数のマルウェアカテゴリにまたがっている。
メモリ分析による難読化マルウェア検出のための機械学習アルゴリズムの包括的評価を提供することにより、サイバーセキュリティを強化し、進化的で洗練されたマルウェアの脅威に対してデジタルエコシステムを強化するための継続的な取り組みに寄与する。
ソースコードは再現性と将来の研究活動のためにオープンアクセスされている。
https://bit.ly/MalMemCodeでアクセスできる。
関連論文リスト
- Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Review of Deep Learning-based Malware Detection for Android and Windows
System [2.855485723554975]
最近のマルウェアファミリーのほとんどは人工知能(AI)であり、異なる難読化技術を用いて従来のマルウェアシステムを騙すことができる。
そこで本研究では,Windows と Android の2つのマルウェア検出技術について概説する。
論文 参考訳(メタデータ) (2023-07-04T06:02:04Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Design of secure and robust cognitive system for malware detection [0.571097144710995]
インプットサンプルに摂動をインテリジェントに作り、付加することで、敵対するサンプルが生成される。
この論文の目的は、重要なシステムのセキュリティ問題に対処することである。
ステルス性マルウェアを検出する新しい手法が提案されている。
論文 参考訳(メタデータ) (2022-08-03T18:52:38Z) - Malware Detection and Prevention using Artificial Intelligence
Techniques [7.583480439784955]
マルウェアの活動の増加により、セキュリティが大きな問題となっている。
本研究では,マルウェアの活動を検出し防止するための人工知能(AI)に基づく手法を強調した。
論文 参考訳(メタデータ) (2022-06-26T02:41:46Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
悪意のあるアクターが代理モデルを訓練して、インスタンスが誤分類される原因となるバイナリ変異を発見する方法を示す。
そして、変異したマルウェアが、抗ウイルスAPIの代わりとなる被害者モデルに送られ、検出を回避できるかどうかをテストする。
論文 参考訳(メタデータ) (2021-06-15T03:31:02Z) - A Novel Malware Detection Mechanism based on Features Extracted from
Converted Malware Binary Images [0.22843885788439805]
マルウェアのバイナリイメージを使用して、異なる特徴を抽出し、得られたデータセットに異なるML分類器を用いる。
本手法は,抽出した特徴に基づくマルウェアの分類に成功していることを示す。
論文 参考訳(メタデータ) (2021-04-14T06:55:52Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。