論文の概要: EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles
- arxiv url: http://arxiv.org/abs/2407.16189v1
- Date: Tue, 23 Jul 2024 05:31:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:35:54.526696
- Title: EIANet: A Novel Domain Adaptation Approach to Maximize Class Distinction with Neural Collapse Principles
- Title(参考訳): EIANet: ニューラルネットワークによるクラス識別の最大化のための新しいドメイン適応手法
- Authors: Zicheng Pan, Xiaohan Yu, Yongsheng Gao,
- Abstract要約: ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
SFDAにおける大きな課題は、ターゲットドメインの正確な分類情報を導き出すことである。
クラスプロトタイプを分離するための新しいETF-Informed Attention Network(EIANet)を導入する。
- 参考スコア(独自算出の注目度): 15.19374752514876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-free domain adaptation (SFDA) aims to transfer knowledge from a labelled source domain to an unlabelled target domain. A major challenge in SFDA is deriving accurate categorical information for the target domain, especially when sample embeddings from different classes appear similar. This issue is particularly pronounced in fine-grained visual categorization tasks, where inter-class differences are subtle. To overcome this challenge, we introduce a novel ETF-Informed Attention Network (EIANet) to separate class prototypes by utilizing attention and neural collapse principles. More specifically, EIANet employs a simplex Equiangular Tight Frame (ETF) classifier in conjunction with an attention mechanism, facilitating the model to focus on discriminative features and ensuring maximum class prototype separation. This innovative approach effectively enlarges the feature difference between different classes in the latent space by locating salient regions, thereby preventing the misclassification of similar but distinct category samples and providing more accurate categorical information to guide the fine-tuning process on the target domain. Experimental results across four SFDA datasets validate EIANet's state-of-the-art performance. Code is available at: https://github.com/zichengpan/EIANet.
- Abstract(参考訳): ソースフリードメイン適応(SFDA)は、ラベル付きソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
SFDAにおける大きな課題は、特に異なるクラスからのサンプル埋め込みが類似しているように見える場合に、ターゲットドメインの正確な分類情報を導出することである。
この問題は、クラス間の違いが微妙な微粒な視覚分類タスクにおいて特に顕著である。
この課題を克服するために、注意と神経崩壊の原理を利用して、クラスプロトタイプを分離する新しいETF-Informed Attention Network(EIANet)を導入する。
より具体的には、EIANetは、注意機構とともに、単純なEquiangular Tight Frame (ETF)分類器を使用し、モデルの識別機能へのフォーカスを容易にし、最大クラスのプロトタイプ分離を保証する。
この革新的なアプローチは、有意な領域を配置することで、潜在空間における異なるクラス間の特徴差を効果的に拡大し、類似しているが異なるカテゴリサンプルの誤分類を防止し、より正確なカテゴリ情報を提供し、ターゲット領域の微調整プロセスを導く。
SFDAデータセット4つの実験結果は、EIANetの最先端のパフォーマンスを検証している。
コードは、https://github.com/zichengpan/EIANet.comで入手できる。
関連論文リスト
- Upcycling Models under Domain and Category Shift [95.22147885947732]
グローバルかつ局所的なクラスタリング学習技術(GLC)を導入する。
我々は、異なる対象クラス間での区別を実現するために、新しい1-vs-allグローバルクラスタリングアルゴリズムを設計する。
注目すべきは、最も困難なオープンパーティルセットDAシナリオにおいて、GLCは、VisDAベンチマークでUMADを14.8%上回っていることである。
論文 参考訳(メタデータ) (2023-03-13T13:44:04Z) - Self-Paced Learning for Open-Set Domain Adaptation [50.620824701934]
従来のドメイン適応手法は、ソースとターゲットドメインのクラスが同一であると仮定する。
オープンセットドメイン適応(OSDA)は、この制限に対処する。
そこで,本研究では,共通クラスと未知クラスを識別するための自己評価学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-10T14:11:09Z) - High-level semantic feature matters few-shot unsupervised domain
adaptation [15.12545632709954]
FS-UDAのためのタスク固有意味特徴学習法(TSECS)を提案する。
TSECSは画像とクラス間の類似度測定のための高レベルの意味的特徴を学習する。
提案手法はFS-UDAのSOTA法よりも大きなマージンで優れていることを示す。
論文 参考訳(メタデータ) (2023-01-05T08:39:52Z) - Continual Unsupervised Domain Adaptation for Semantic Segmentation using
a Class-Specific Transfer [9.46677024179954]
セグメンテーションモデルは 目に見えない領域に一般化しません
2つのクラス条件のAdaIN層を組み込んだ軽量なスタイル転送フレームワークを提案する。
合成シーケンスに対する我々のアプローチを広く検証し、さらに実領域からなる挑戦的なシーケンスを提案する。
論文 参考訳(メタデータ) (2022-08-12T21:30:49Z) - Semantic Concentration for Domain Adaptation [23.706231329913113]
ドメイン適応(DA)は、ラベル豊富なソースドメインから関連するがラベルのないターゲットドメインへの知識転送によるラベルアノテーションとデータセットバイアスの問題に対する道を開く。
DA手法の主流は、2つのドメインの特徴分布を整列させることである。
本稿では,ドメイン適応のためのセマンティック集中モデルを提案する。
論文 参考訳(メタデータ) (2021-08-12T13:04:36Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z) - MiniMax Entropy Network: Learning Category-Invariant Features for Domain Adaptation [29.43532067090422]
逆学習に基づくMMEN(MiniMax Entropy Networks)と呼ばれる実装が容易な手法を提案する。
ドメイン差に対処するためにジェネレータを使用する既存のアプローチとは異なり、MMENはラベルのないターゲットサンプルからカテゴリ情報を学習することに重点を置いている。
論文 参考訳(メタデータ) (2019-04-21T13:39:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。