論文の概要: Graph-Structured Speculative Decoding
- arxiv url: http://arxiv.org/abs/2407.16207v1
- Date: Tue, 23 Jul 2024 06:21:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:25:52.812210
- Title: Graph-Structured Speculative Decoding
- Title(参考訳): グラフ構造化された投機的復号法
- Authors: Zhuocheng Gong, Jiahao Liu, Ziyue Wang, Pengfei Wu, Jingang Wang, Xunliang Cai, Dongyan Zhao, Rui Yan,
- Abstract要約: 投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
- 参考スコア(独自算出の注目度): 52.94367724136063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models (LLMs) by employing a small language model to draft a hypothesis sequence, which is then validated by the LLM. The effectiveness of this approach heavily relies on the balance between performance and efficiency of the draft model. In our research, we focus on enhancing the proportion of draft tokens that are accepted to the final output by generating multiple hypotheses instead of just one. This allows the LLM more options to choose from and select the longest sequence that meets its standards. Our analysis reveals that hypotheses produced by the draft model share many common token sequences, suggesting a potential for optimizing computation. Leveraging this observation, we introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses. This structure enables us to efficiently predict and merge recurring token sequences, vastly reducing the computational demands of the draft model. We term this approach Graph-structured Speculative Decoding (GSD). We apply GSD across a range of LLMs, including a 70-billion parameter LLaMA-2 model, and observe a remarkable speedup of 1.73$\times$ to 1.96$\times$, significantly surpassing standard speculative decoding.
- Abstract(参考訳): 投機的復号化は,小言語モデルを用いて仮説列を起草し,LLMで検証することで,大規模言語モデル(LLM)の推論を加速する有望な手法として登場した。
このアプローチの有効性は、ドラフトモデルの性能と効率のバランスに大きく依存しています。
本研究は,1つではなく複数の仮説を生成することにより,最終的な出力に受け入れられるドラフトトークンの割合を高めることに焦点を当てる。
これにより、LLMはより多くのオプションを選択でき、その標準を満たす最長のシーケンスを選択することができる。
分析の結果,提案手法は共通トークン列を多数共有しており,計算の最適化の可能性も示唆されている。
この観察を生かして、有向非巡回グラフ(DAG)を用いて、起案された仮説を管理する革新的なアプローチを導入する。
この構造により、繰り返し発生するトークン列を効率的に予測し、マージし、ドラフトモデルの計算要求を大幅に削減できる。
このアプローチをグラフ構造化投機復号(GSD)と呼ぶ。
我々は、70ビリオンパラメータLLaMA-2モデルを含む幅広いLSMに適用し、1.73$\times$から1.96$\times$に顕著なスピードアップを観測し、標準投機的復号をはるかに上回っている。
関連論文リスト
- Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding [1.3479499607624648]
投機的復号化は、ドラフトと検証という2段階のフレームワークを導入することでボトルネックに対処する。
より小さく効率的なモデルが予備のドラフトを生成し、より大きくより洗練されたモデルによって洗練される。
本稿では、投機的復号法を包括的に調査し、それらをドラフト中心およびモデル中心のアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-20T09:46:30Z) - Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation [8.046705062670096]
損失のない投機的復号化は、ターゲットとする大言語モデル推論を加速する。
FSPAD (Feature Sampling and partial Alignment Distillation for Lossless Speculative Decoding) を提案する。
我々の実験は、ヴィクナ級数とLLaMA3-インストラクト級数で最大かつ最小のモデルにおいて、欲求と非欲求デコーディングの両方を含む。
論文 参考訳(メタデータ) (2024-08-28T06:28:01Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
GliDe と CaPE を導入し,バニラ投機復号への2つの低ハードル修正を行った。
GliDeは、ターゲットのLLMからキャッシュされたキーと値を再利用する、修正されたドラフトモデルアーキテクチャである。
コード、データ、トレーニング済みのドラフトモデルをリリースします。
論文 参考訳(メタデータ) (2024-02-03T08:44:11Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
大規模な言語モデルは、様々なNLPタスクで印象的な機能を示してきたが、その生成は自動回帰的に時間を要する。
これは高速なドラフトモデルから候補セグメントを生成し、ターゲットモデルによって並列に検証する。
本稿では,複数の候補をドラフトモデルから抽出し,検証のためにバッチにまとめる手法を提案する。
対象モデルの分布を維持しつつ,効率的な多候補検証のためのアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-01-12T17:15:23Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
NLPシステムの予測に関する因果的説明は、安全性を確保し、信頼を確立するために不可欠である。
既存の手法は、しばしばモデル予測を効果的または効率的に説明できない。
本稿では, 対物近似(CF)の2つの手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T07:31:04Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。