論文の概要: Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
- arxiv url: http://arxiv.org/abs/2411.13157v1
- Date: Wed, 20 Nov 2024 09:46:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:41.786090
- Title: Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
- Title(参考訳): 効率的な推論手法のクローズアップ:投機的復号化に関する調査
- Authors: Hyun Ryu, Eric Kim,
- Abstract要約: 投機的復号化は、ドラフトと検証という2段階のフレームワークを導入することでボトルネックに対処する。
より小さく効率的なモデルが予備のドラフトを生成し、より大きくより洗練されたモデルによって洗練される。
本稿では、投機的復号法を包括的に調査し、それらをドラフト中心およびモデル中心のアプローチに分類する。
- 参考スコア(独自算出の注目度): 1.3479499607624648
- License:
- Abstract: Efficient inference in large language models (LLMs) has become a critical focus as their scale and complexity grow. Traditional autoregressive decoding, while effective, suffers from computational inefficiencies due to its sequential token generation process. Speculative decoding addresses this bottleneck by introducing a two-stage framework: drafting and verification. A smaller, efficient model generates a preliminary draft, which is then refined by a larger, more sophisticated model. This paper provides a comprehensive survey of speculative decoding methods, categorizing them into draft-centric and model-centric approaches. We discuss key ideas associated with each method, highlighting their potential for scaling LLM inference. This survey aims to guide future research in optimizing speculative decoding and its integration into real-world LLM applications.
- Abstract(参考訳): 大規模言語モデル(LLM)における効率的な推論は、その規模と複雑さが増大するにつれて、重要な焦点となっている。
従来の自己回帰復号法は有効ではあるが、シーケンシャルトークン生成プロセスのために計算の非効率さに悩まされている。
投機的復号化は、ドラフトと検証という2段階のフレームワークを導入することで、このボトルネックに対処する。
より小さく効率的なモデルが予備のドラフトを生成し、より大きくより洗練されたモデルによって洗練される。
本稿では、投機的復号法を包括的に調査し、それらをドラフト中心およびモデル中心のアプローチに分類する。
それぞれの手法に関連する重要なアイデアについて論じ,LLM推論のスケーリングの可能性を強調した。
本調査は,投機的復号化と実世界のLLMアプリケーションへの統合を最適化するための今後の研究を導くことを目的としている。
関連論文リスト
- Boosting Lossless Speculative Decoding via Feature Sampling and Partial Alignment Distillation [8.046705062670096]
損失のない投機的復号化は、ターゲットとする大言語モデル推論を加速する。
FSPAD (Feature Sampling and partial Alignment Distillation for Lossless Speculative Decoding) を提案する。
我々の実験は、ヴィクナ級数とLLaMA3-インストラクト級数で最大かつ最小のモデルにおいて、欲求と非欲求デコーディングの両方を含む。
論文 参考訳(メタデータ) (2024-08-28T06:28:01Z) - Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
大きな言語モデル(LLM)は、様々なタスクにまたがる顕著なパフォーマンスのために、広く注目を集めている。
LLM推論のかなりの計算とメモリ要件は、リソース制約のあるシナリオへの展開に困難をもたらす。
本稿では,LLMの効率的な推論について,既存の文献を包括的に調査する。
論文 参考訳(メタデータ) (2024-04-22T15:53:08Z) - Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens [15.566726645722657]
投機的サンプリングに特化して設計された新しいフレームワークを提案する。
このフレームワーク内では、以前に生成されたトークンを効果的に活用し、後続の単語を予測する軽量なドラフトモデルを導入する。
我々は、バニラ自動回帰復号方式と比較して平均遅延速度比が2.7倍になるという印象的な結果を示した。
論文 参考訳(メタデータ) (2024-02-24T08:10:39Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
復号法は、次世代の予測器から実用的なタスク解決器に言語モデルを変換する上で、必須の役割を果たす。
本稿では,大規模言語モデルの文脈における様々な復号法を包括的かつ多面的に分析する。
その結果,復号法の性能は特にタスク依存的であり,アライメント,モデルサイズ,量子化などの要因に影響されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-10T11:14:53Z) - Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding [46.485363806259265]
投機的デコーディングは、LLM(Large Language Models)推論のための新しいデコーディングパラダイムとして登場した。
復号処理の各ステップにおいて、この手法はまず、複数の将来のトークンを効率的にドラフトし、それらを並列に検証する。
本稿では,この有望な復号化パラダイムの概観と解析について述べる。
論文 参考訳(メタデータ) (2024-01-15T17:26:50Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。