論文の概要: Federated Learning for Face Recognition via Intra-subject Self-supervised Learning
- arxiv url: http://arxiv.org/abs/2407.16289v1
- Date: Tue, 23 Jul 2024 08:43:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 18:06:10.911618
- Title: Federated Learning for Face Recognition via Intra-subject Self-supervised Learning
- Title(参考訳): 物体内自己教師型学習による顔認識のためのフェデレーション学習
- Authors: Hansol Kim, Hoyeol Choi, Youngjun Kwak,
- Abstract要約: 対象を含まない顔認識モデルを学習するためのFedFS (Federated Learning for Personal Face Recognition via intra-ject Self-supervised Learning framework)を提案する。
FedFSは、ローカルモデルとグローバルモデルの集約された特徴を活用して、オフザシェルフモデルの表現に協力する2つの重要なコンポーネントから構成される。
我々は,DigiFace-1MおよびVGGFaceデータセットの総合的な実験を行い,従来の手法と比較して優れた性能を示した。
- 参考スコア(独自算出の注目度): 3.9899461012388504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) for face recognition aggregates locally optimized models from individual clients to construct a generalized face recognition model. However, previous studies present two major challenges: insufficient incorporation of self-supervised learning and the necessity for clients to accommodate multiple subjects. To tackle these limitations, we propose FedFS (Federated Learning for personalized Face recognition via intra-subject Self-supervised learning framework), a novel federated learning architecture tailored to train personalized face recognition models without imposing subjects. Our proposed FedFS comprises two crucial components that leverage aggregated features of the local and global models to cooperate with representations of an off-the-shelf model. These components are (1) adaptive soft label construction, utilizing dot product operations to reformat labels within intra-instances, and (2) intra-subject self-supervised learning, employing cosine similarity operations to strengthen robust intra-subject representations. Additionally, we introduce a regularization loss to prevent overfitting and ensure the stability of the optimized model. To assess the effectiveness of FedFS, we conduct comprehensive experiments on the DigiFace-1M and VGGFace datasets, demonstrating superior performance compared to previous methods.
- Abstract(参考訳): 顔認識のためのフェデレートラーニング(FL)は、個々のクライアントから局所的に最適化されたモデルを集約し、一般化された顔認識モデルを構築する。
しかし,従来の研究では,自己指導型学習の不十分な導入と,複数の課題に対応するクライアントの必要性という2つの大きな課題が報告されている。
これらの制約に対処するために,対象を含まないパーソナライズされた顔認識モデルのトレーニングに適した,新たなフェデレーション学習アーキテクチャであるFedFS(Federated Learning for Personal Face Recognition via In-jectject Self-supervised Learning framework)を提案する。
提案するFedFSは,ローカルモデルとグローバルモデルの集約的特徴を利用して,既成モデルの表現に協調する2つの重要なコンポーネントから構成される。
これらの構成要素は,(1)適応型ソフトラベル構築,(2)ドット製品操作,(2)オブジェクト内ラベルの再構築,(2)コサイン類似性操作によるオブジェクト内表現の強化などである。
さらに、最適化モデルの過度な適合を防止し、安定性を確保するために正規化損失を導入する。
FedFSの有効性を評価するため、DigiFace-1MおよびVGGFaceデータセットの総合的な実験を行い、従来の手法と比較して優れた性能を示す。
関連論文リスト
- CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition [0.0]
CLFaceは学習知識の保存と漸進的な拡張を目的とした継続的学習フレームワークである。
分類層を排除し、生涯学習を通して固定された資源効率の高いFRモデルをもたらす。
教師モデルの特徴埋め込みの向きを維持するために、幾何学保存蒸留スキームが組み込まれている。
論文 参考訳(メタデータ) (2024-11-21T06:55:43Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - AdaFedFR: Federated Face Recognition with Adaptive Inter-Class Representation Learning [14.139432393751298]
本稿では,AdaFedFRというシンプルなフェデレーション顔認識フレームワークを提案する。
本研究では,公共アイデンティティの特徴表現を学習可能な負の知識として微妙に活用し,局所的な目的を最適化する。
実験により,本手法は,3ラウンド未満の通信ラウンドにおいて,複数の顔認識ベンチマークにおいて,従来の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-22T09:19:25Z) - ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Emotic Masked Autoencoder with Attention Fusion for Facial Expression Recognition [1.4374467687356276]
本稿では,MAE-Face self-supervised learning (SSL) 法と多視点融合注意機構を組み合わせた表現分類手法を提案する。
我々は、重要な顔の特徴を強調表示して、そのような機能がモデルのガイドとして機能するかどうかを判断することを目的とした、実装が容易でトレーニングなしのフレームワークを提案する。
Aff-wild2データセットにおけるモデル性能の改善により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-19T16:21:47Z) - Faceptor: A Generalist Model for Face Perception [52.8066001012464]
Faceptorは、よく設計されたシングルエンコーダのデュアルデコーダアーキテクチャを採用するために提案されている。
Faceptorへのレイヤアテンションにより、モデルが最適なレイヤから機能を適応的に選択して、望ましいタスクを実行することができる。
我々のトレーニングフレームワークは補助的な教師付き学習にも適用でき、年齢推定や表現認識といったデータスパースタスクの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-14T15:42:31Z) - Robust Training of Federated Models with Extremely Label Deficiency [84.00832527512148]
フェデレーション半教師付き学習(FSSL)は、ラベル不足を伴う分散データを用いて機械学習モデルを協調訓練するための強力なパラダイムとして登場した。
我々は,ラベル付きおよびラベルなしデータの異なる視点から洞察を提供することにより相互指導を強化するために,ツインサイトと呼ばれる新しいツインモデルパラダイムを提案する。
4つのベンチマークデータセットに関する包括的な実験は、Twin-sightが様々な実験環境において最先端の手法を著しく上回っていることを示す重要な証拠となる。
論文 参考訳(メタデータ) (2024-02-22T10:19:34Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
フェデレーション学習は、ホワイトボックス攻撃に脆弱で、異種クライアントへの適応に苦慮している。
本稿では,選択的FD(Selective-FD)と呼ばれるFDのための選択的知識共有機構を提案する。
論文 参考訳(メタデータ) (2023-04-04T12:04:19Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Federated Self-supervised Learning for Heterogeneous Clients [20.33482170846688]
異種クライアント上でのフェデレーションによる自己教師型学習を実現するための統一的かつ体系的なフレームワークであるemphHeterogeneous Self-supervised Federated Learning (Hetero-SSFL)を提案する。
提案したフレームワークは、アーキテクチャ上の制約やラベル付きデータの存在を伴わずに、すべてのクライアントをまたいだ表現学習を可能にする。
我々は,提案手法が最先端の手法よりも優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2022-05-25T05:07:44Z) - A Closer Look at Personalization in Federated Image Classification [33.27317065917578]
フェデレートラーニング(FL)は、分散化されたデータにまたがる単一のグローバルモデルを学ぶために開発された。
本稿では,グローバルモデルの収束後,フレキシブルなパーソナライゼーションを実現することができることを示す。
独立二段階パーソナライズされたFLフレームワークであるRepPerを提案する。
論文 参考訳(メタデータ) (2022-04-22T06:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。