論文の概要: Ranking protein-protein models with large language models and graph neural networks
- arxiv url: http://arxiv.org/abs/2407.16375v1
- Date: Tue, 23 Jul 2024 10:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 17:36:04.705264
- Title: Ranking protein-protein models with large language models and graph neural networks
- Title(参考訳): 大規模言語モデルとグラフニューラルネットワークを用いたタンパク質-タンパク質のランク付け
- Authors: Xiaotong Xu, Alexandre M. J. J. Bonvin,
- Abstract要約: DeepRank-GNN-esmはグラフベースのPPI構造のランク付けのためのディープラーニングアルゴリズムである。
ここでは、例を挙げて、ソフトウェアの使用について詳述する。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Protein-protein interactions (PPIs) are associated with various diseases, including cancer, infections, and neurodegenerative disorders. Obtaining three-dimensional structural information on these PPIs serves as a foundation to interfere with those or to guide drug design. Various strategies can be followed to model those complexes, all typically resulting in a large number of models. A challenging step in this process is the identification of good models (near-native PPI conformations) from the large pool of generated models. To address this challenge, we previously developed DeepRank-GNN-esm, a graph-based deep learning algorithm for ranking modelled PPI structures harnessing the power of protein language models. Here, we detail the use of our software with examples. DeepRank-GNN-esm is freely available at https://github.com/haddocking/DeepRank-GNN-esm
- Abstract(参考訳): タンパク質とタンパク質の相互作用(PPI)は、がん、感染症、神経変性疾患など様々な疾患と関連している。
これらのPPIに関する3次元構造情報を取得することは、それらに干渉したり、薬物設計を誘導するための基盤となる。
これらの錯体をモデル化するためには、様々な戦略が従うことができるが、それらは典型的には多数のモデルをもたらす。
このプロセスにおける挑戦的なステップは、生成されたモデルの大きなプールから良いモデル(ほぼネイティブなPPIコンフォーメーション)を特定することである。
この課題に対処するために、我々は以前、タンパク質言語モデルのパワーを利用するPPI構造のランク付けのためのグラフベースのディープラーニングアルゴリズムであるDeepRank-GNN-esmを開発した。
ここでは、例を挙げて、ソフトウェアの使用について詳述する。
DeepRank-GNN-esmはhttps://github.com/haddocking/DeepRank-GNN-esmで無料で利用できる。
関連論文リスト
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
グラフニューラルネットワーク(GNN)は、その一般化能力によってサポートされている様々なタスクにおいて、その効果を実証している。
本稿では,多様体モデルから生成される幾何グラフで動作するGNNについて検討する。
本稿では,そのようなモデルミスマッチの存在下でのGNN一般化の堅牢性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T16:00:44Z) - ContactNet: Geometric-Based Deep Learning Model for Predicting Protein-Protein Interactions [2.874893537471256]
我々は,PPIモデルを正確かつ誤ったものに分類するための新しい注目型グラフニューラルネットワーク(GNN)であるContactNetを開発した。
ドッキング抗原やモデル抗体構造を訓練すると、ContactNetは現在の最先端のスコアリング機能の精度を2倍にする。
論文 参考訳(メタデータ) (2024-06-26T12:54:41Z) - On the Scalability of GNNs for Molecular Graphs [7.402389334892391]
グラフニューラルネットワーク(GNN)は、スパース演算の効率の低下、大規模なデータ要求、さまざまなアーキテクチャの有効性の明確さの欠如など、スケールのメリットをまだ示していない。
我々は,2次元分子グラフの公開コレクションにおいて,メッセージパッシングネットワーク,グラフトランスフォーマー,ハイブリッドアーキテクチャを解析する。
初めて、GNNは、深度、幅、分子数、ラベルの数、事前訓練データセットの多様性の増大によって、非常に恩恵を受けることを観察した。
論文 参考訳(メタデータ) (2024-04-17T17:11:31Z) - First-order PDES for Graph Neural Networks: Advection And Burgers Equation Models [1.4174475093445238]
本稿では,2つの一階偏微分方程式(PDE)を組み込んだ新しいグラフニューラルネットワークモデルを提案する。
実験結果から,高次PDEモデルと同等の結果を得るための新しいPDEモデルの能力を強調し,最大64層までのオーバースムーシング問題を修正した。
結果は,GNNの適応性と汎用性を強調し,従来の手法と同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2024-04-03T21:47:02Z) - Target-aware Variational Auto-encoders for Ligand Generation with
Multimodal Protein Representation Learning [2.01243755755303]
ターゲット認識型自動エンコーダであるTargetVAEを導入し、任意のタンパク質標的に対する高い結合親和性で生成する。
これは、タンパク質の異なる表現を単一のモデルに統一する最初の試みであり、これは我々がタンパク質マルチモーダルネットワーク(PMN)と呼ぶ。
論文 参考訳(メタデータ) (2023-08-02T12:08:17Z) - Neural Basis Models for Interpretability [33.51591891812176]
一般化加法モデル(GAMs)は本質的に解釈可能なモデルのクラスである。
形状関数の基底分解を利用するGAMの全く新しいサブファミリーを提案する。
少数の基底関数はすべての機能で共有され、与えられたタスクに対して共同で学習される。
論文 参考訳(メタデータ) (2022-05-27T17:31:19Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
我々は、勾配降下訓練におけるディープニューラルネットワーク(DNN)の収束に対する接続パターンの影響を理論的に特徴づける。
接続パターンの単純なフィルタリングによって、評価対象のモデルの数を削減できることが示される。
論文 参考訳(メタデータ) (2022-05-11T17:43:54Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。