論文の概要: First-order PDES for Graph Neural Networks: Advection And Burgers Equation Models
- arxiv url: http://arxiv.org/abs/2404.03081v1
- Date: Wed, 3 Apr 2024 21:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 16:22:48.182500
- Title: First-order PDES for Graph Neural Networks: Advection And Burgers Equation Models
- Title(参考訳): グラフニューラルネットワークのための1次PDES:アドベクションとバーガー方程式モデル
- Authors: Yifan Qu, Oliver Krzysik, Hans De Sterck, Omer Ege Kara,
- Abstract要約: 本稿では,2つの一階偏微分方程式(PDE)を組み込んだ新しいグラフニューラルネットワークモデルを提案する。
実験結果から,高次PDEモデルと同等の結果を得るための新しいPDEモデルの能力を強調し,最大64層までのオーバースムーシング問題を修正した。
結果は,GNNの適応性と汎用性を強調し,従来の手法と同等の結果が得られることを示す。
- 参考スコア(独自算出の注目度): 1.4174475093445238
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have established themselves as the preferred methodology in a multitude of domains, ranging from computer vision to computational biology, especially in contexts where data inherently conform to graph structures. While many existing methods have endeavored to model GNNs using various techniques, a prevalent challenge they grapple with is the issue of over-smoothing. This paper presents new Graph Neural Network models that incorporate two first-order Partial Differential Equations (PDEs). These models do not increase complexity but effectively mitigate the over-smoothing problem. Our experimental findings highlight the capacity of our new PDE model to achieve comparable results with higher-order PDE models and fix the over-smoothing problem up to 64 layers. These results underscore the adaptability and versatility of GNNs, indicating that unconventional approaches can yield outcomes on par with established techniques.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、コンピュータビジョンから計算生物学まで、特にデータが本質的にグラフ構造に従属するコンテキストにおいて、様々な領域において、自らを好ましい方法論として確立してきた。
既存の多くの手法は様々な手法を用いてGNNをモデル化しようと努力してきたが、それらが直面している課題は過度なスムーシングの問題である。
本稿では,2つの一階偏微分方程式(PDE)を組み込んだ新しいグラフニューラルネットワークモデルを提案する。
これらのモデルは複雑さを増大させるのではなく、過度に滑らかな問題を効果的に緩和する。
実験結果から,高次PDEモデルと同等の結果を得るための新しいPDEモデルの能力を強調し,最大64層までのオーバースムーシング問題を修正した。
これらの結果は、GNNの適応性と汎用性を強調し、従来と異なるアプローチが確立した手法と同等の結果をもたらすことを示唆している。
関連論文リスト
- Graph Neural Reaction Diffusion Models [14.164952387868341]
本稿では,ニューラルRDシステムに基づく反応GNNの新たなファミリーを提案する。
本稿では,RDGNNの理論的特性とその実装について論じるとともに,最先端手法の競争性能を向上させるか,提供するかを示す。
論文 参考訳(メタデータ) (2024-06-16T09:46:58Z) - BG-HGNN: Toward Scalable and Efficient Heterogeneous Graph Neural
Network [6.598758004828656]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフ用に設計された有望なニューラルモデルクラスである。
既存のHGNNは、様々な関係をモデル化するために異なるパラメータ空間を使用する。
本稿では,Blend&Grind-HGNNについて紹介する。
論文 参考訳(メタデータ) (2024-03-13T03:03:40Z) - GNRK: Graph Neural Runge-Kutta method for solving partial differential
equations [0.0]
本研究はグラフニューラルランゲ・クッタ(GNRK)と呼ばれる新しいアプローチを紹介する。
GNRKはグラフニューラルネットワークモジュールを古典的解法にインスパイアされた再帰構造に統合する。
これは、初期条件やPDE係数に関係なく、一般的なPDEに対処する能力を示す。
論文 参考訳(メタデータ) (2023-10-01T08:52:46Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Will More Expressive Graph Neural Networks do Better on Generative
Tasks? [27.412913421460388]
グラフニューラルネットワーク(GNN)アーキテクチャはしばしば過小評価される。
グラフ生成モデルの基盤となるGNNを、より表現力のあるGNNに置き換える。
高度なGNNは、他の17の非GNNグラフ生成アプローチで最先端の結果を達成することができる。
論文 参考訳(メタデータ) (2023-08-23T07:57:45Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
グラフニューラルネットワーク(GNN)は多くのアプリケーションでグラフ構造化データのモデリングに広く利用されている。
この制限により、無限深度GNNモデルを提案し、これをEIGNN(Efficient Infinite-Depth Graph Neural Networks)と呼ぶ。
EIGNNは、最近のベースラインよりも長距離依存関係をキャプチャする能力が優れており、常に最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2022-02-22T08:16:58Z) - GRAND: Graph Neural Diffusion [15.00135729657076]
本稿では,連続拡散過程としてグラフの深層学習にアプローチするグラフニューラル拡散(GRAND)を提案する。
我々のモデルでは、層構造と位相は時間的および空間的作用素の離散化選択に対応する。
我々のモデルの成功の鍵は、データの摂動に対する安定性であり、これは暗黙的および明示的な離散化スキームの両方に対処する。
論文 参考訳(メタデータ) (2021-06-21T09:10:57Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。