Phases and dynamics of quantum droplets in the crossover to two-dimensions
- URL: http://arxiv.org/abs/2407.16383v1
- Date: Tue, 23 Jul 2024 11:14:47 GMT
- Title: Phases and dynamics of quantum droplets in the crossover to two-dimensions
- Authors: Jose Carlos Pelayo, George Bougas, Thomás Fogarty, Thomas Busch, Simeon I. Mistakidis,
- Abstract summary: We explore the dynamics of ultracold atomic droplets in the crossover region from three to two dimensions.
One of our main findings is that droplets can become substantially extended when their binding energies become small.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the ground states and dynamics of ultracold atomic droplets in the crossover region from three to two dimensions by solving the two-dimensional and the quasi two-dimensional extended Gross-Pitaevskii equations numerically and with a variational approach. By systematically comparing the droplet properties, we determine the validity regions of the pure two-dimensional description, and therefore the dominance of the logarithmic nonlinear coupling, as a function of the sign of the averaged mean-field interactions and the size of the transverse confinement. One of our main findings is that droplets can become substantially extended when their binding energies become small upon transitioning from negative-to-positive averaged mean-field interactions. To explore fundamental dynamical properties in the cross-over region, we study interaction quenches and show that the droplets perform a periodic breathing motion for modest quench strengths, while larger quench amplitudes lead to continuous expansion exhibiting density ring structures. We also showcase that it is possible to form complex bulk and surface density patterns in anisotropic geometries following the quench. Since we are working with realistic parameters, our results can directly facilitate future experimental realizations.
Related papers
- Constrained dynamics and confinement in the two-dimensional quantum Ising model [0.0]
We investigate the dynamics of the quantum Ising model on two-dimensional square lattices up to $16 times 16$ spins.
In the ordered phase, the model is predicted to exhibit dynamically constrained dynamics, leading to confinement of excitations and slow thermalization.
arXiv Detail & Related papers (2024-06-17T18:01:34Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Ground-state Properties and Bogoliubov Modes of a Harmonically Trapped
One-Dimensional Quantum Droplet [4.864202986612716]
We study the stationary and excitation properties of a one-dimensional quantum droplet in a Bose mixture trapped in a harmonic potential.
We explicitly show how the spectrum of the excitation is split into discrete modes, and finally taken over by the harmonic trap.
arXiv Detail & Related papers (2023-09-11T05:39:53Z) - Superfluid-droplet crossover in a binary boson mixture on a ring: Exact
diagonalization solutions for few-particle systems in one dimension [0.0]
We investigate the formation of self-bound quantum droplets in a one-dimensional binary mixture of bosonic atoms.
Results show a remarkable agreement between the few-body regime and the thermodynamic limit in one dimension.
arXiv Detail & Related papers (2023-02-01T11:45:45Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Interface dynamics in the two-dimensional quantum Ising model [0.0]
We show that the dynamics of interfaces, in the symmetry-broken phase of the two-dimensional ferromagnetic quantum Ising model, displays a robust form of ergodicity breaking.
We present a detailed analysis of the evolution of these interfaces both on the lattice and in a suitable continuum limit.
The implications of our work for the classic problem of the decay of a false vacuum are also discussed.
arXiv Detail & Related papers (2022-09-19T13:08:58Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Stationary and dynamical properties of two harmonically trapped bosons
in the crossover from two dimensions to one [0.0]
We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-dimensional anisotropic harmonic trap.
The relation between the two and the one dimensional scattering lengths as well as the Tan contacts is established.
The interaction quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies.
arXiv Detail & Related papers (2020-01-29T08:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.