Robust excitation of C-band quantum dots for quantum communication
- URL: http://arxiv.org/abs/2305.13273v2
- Date: Fri, 3 Nov 2023 09:15:47 GMT
- Title: Robust excitation of C-band quantum dots for quantum communication
- Authors: Michal Vyvlecka, Lennart Jehle, Cornelius Nawrath, Francesco Giorgino,
Mathieu Bozzio, Robert Sittig, Michael Jetter, Simone L. Portalupi, Peter
Michler, and Philip Walther
- Abstract summary: We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building a quantum internet requires efficient and reliable quantum hardware,
from photonic sources to quantum repeaters and detectors, ideally operating at
telecommunication wavelengths. Thanks to their high brightness and
single-photon purity, quantum dot (QD) sources hold the promise to achieve high
communication rates for quantum-secured network applications. Furthermore, it
was recently shown that excitation schemes, such as longitudinal acoustic
phonon-assisted (LA) pumping, provide security benefits by scrambling the
coherence between the emitted photon-number states. In this work, we
investigate further advantages of LA-pumped quantum dots with emission in the
telecom C-band as a core hardware component of the quantum internet. We
experimentally demonstrate how varying the pump energy and spectral detuning
with respect to the excitonic transition can improve quantum-secured
communication rates and provide stable emission statistics regardless of
network-environment fluctuations. These findings have significant implications
for general implementations of QD single-photon sources in practical quantum
communication networks.
Related papers
- Quantum Teleportation with Telecom Photons from Remote Quantum Emitters [0.0]
The quest for a global quantum internet is based on the realization of a scalable network which requires quantum hardware with exceptional performance.
Here we realize full-photonic quantum teleportation employing one of the most promising platforms, i.e. semiconductor quantum dots.
The frequency mismatch between the triggered sources is erased using two polarization-preserving quantum frequency converters.
arXiv Detail & Related papers (2024-11-19T22:42:36Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Robust Parallel Laser Driving of Quantum Dots for Multiplexing of
Quantum Light Sources [0.1806830971023738]
We show the simultaneous triggering of >10 quantum dots using adiabatic rapid passage.
We show that high-fidelity quantum state is possible in a system of quantum dots with a 15meV range of optical transition energies.
arXiv Detail & Related papers (2023-11-28T17:32:45Z) - Telecom band quantum dot technologies for long-distance quantum networks [3.625118537787253]
A future quantum internet is expected to generate, distribute, store and process quantum bits (qubits) over the globe.
To facilitate the long-haul operations, quantum repeaters have to be operated in the telecom wavelengths.
We present the physics and the technological developments towards epitaxial QD devices emitting at the telecom O- and C-bands for quantum networks.
arXiv Detail & Related papers (2023-11-07T13:46:35Z) - Controlling the Photon Number Coherence of Solid-state Quantum Light
Sources for Quantum Cryptography [0.0]
Quantum communication networks rely on quantum cryptographic protocols including quantum key distribution (QKD) using single photons.
A critical element regarding the security of QKD protocols is the photon number coherence (PNC)
We exploit two-photon excitation of a quantum dot combined with a stimulation pulse to generate on-demand single photons with high purity and indistinguishability.
arXiv Detail & Related papers (2023-05-31T16:46:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum Communication Using Semiconductor Quantum Dots [0.0]
Review focuses on implementations of, and building blocks for, quantum communication using quantum-light sources based on epitaxial semiconductor quantum dots.
Recent progress towards quantum-secured communication networks as well as building blocks thereof is summarized.
arXiv Detail & Related papers (2021-08-31T14:32:34Z) - Realizing quantum nodes in space for cost-effective, global quantum
communication: in-orbit results and next steps [94.08853042978113]
SpooQy-1 is a satellite developed at the Centre for Quantum Technologies.
It has successfully demonstrated the operation of an entangled photon pair source on a resource-constrained CubeSat platform.
arXiv Detail & Related papers (2021-04-22T02:59:23Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.