BONES: a Benchmark fOr Neural Estimation of Shapley values
- URL: http://arxiv.org/abs/2407.16482v1
- Date: Tue, 23 Jul 2024 13:53:22 GMT
- Title: BONES: a Benchmark fOr Neural Estimation of Shapley values
- Authors: Davide Napolitano, Luca Cagliero,
- Abstract summary: We present BONES, a new benchmark focused on neural estimation of Shapley Value.
BONES provides researchers with a suite of state-of-the-art neural and traditional estimators.
The purpose is to simplify XAI model usage, evaluation, and comparison.
- Score: 7.243632426715939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Shapley Values are concepts established for eXplainable AI. They are used to explain black-box predictive models by quantifying the features' contributions to the model's outcomes. Since computing the exact Shapley Values is known to be computationally intractable on real-world datasets, neural estimators have emerged as alternative, more scalable approaches to get approximated Shapley Values estimates. However, experiments with neural estimators are currently hard to replicate as algorithm implementations, explainer evaluators, and results visualizations are neither standardized nor promptly usable. To bridge this gap, we present BONES, a new benchmark focused on neural estimation of Shapley Value. It provides researchers with a suite of state-of-the-art neural and traditional estimators, a set of commonly used benchmark datasets, ad hoc modules for training black-box models, as well as specific functions to easily compute the most popular evaluation metrics and visualize results. The purpose is to simplify XAI model usage, evaluation, and comparison. In this paper, we showcase BONES results and visualizations for XAI model benchmarking on both tabular and image data. The open-source library is available at the following link: https://github.com/DavideNapolitano/BONES.
Related papers
- Provably Accurate Shapley Value Estimation via Leverage Score Sampling [12.201705893125775]
We introduce Leverage SHAP, a light-weight modification of Kernel SHAP that provides provably accurate Shapley value estimates with just $O(nlog n)$ model evaluations.
Our approach takes advantage of a connection between Shapley value estimation and active learning by employing leverage score sampling, a powerful regression tool.
arXiv Detail & Related papers (2024-10-02T18:15:48Z) - Towards a Scalable Reference-Free Evaluation of Generative Models [9.322073391374039]
We propose a Kernel Entropy Approximation (FKEA) method to estimate VENDI and RKE entropy scores.
We extensively evaluate FKEA's numerical performance in application to standard image, text, and video datasets.
Our empirical results indicate the method's scalability and interpretability applied to large-scale generative models.
arXiv Detail & Related papers (2024-07-03T09:54:58Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - SHAPNN: Shapley Value Regularized Tabular Neural Network [4.587122314291091]
We present SHAPNN, a novel deep data modeling architecture designed for supervised learning.
Our neural network is trained using standard backward propagation optimization methods, and is regularized with realtime estimated Shapley values.
We evaluate our method on various publicly available datasets and compare it with state-of-the-art deep neural network models.
arXiv Detail & Related papers (2023-09-15T22:45:05Z) - An Efficient Shapley Value Computation for the Naive Bayes Classifier [0.0]
This article proposes an exact analytic expression of Shapley values in the case of the naive Bayes classifier.
Results show that our Shapley proposal for the naive Bayes provides informative results with low algorithmic complexity.
arXiv Detail & Related papers (2023-07-31T14:39:10Z) - Consensus-Adaptive RANSAC [104.87576373187426]
We propose a new RANSAC framework that learns to explore the parameter space by considering the residuals seen so far via a novel attention layer.
The attention mechanism operates on a batch of point-to-model residuals, and updates a per-point estimation state to take into account the consensus found through a lightweight one-step transformer.
arXiv Detail & Related papers (2023-07-26T08:25:46Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Evaluating Graph Neural Networks for Link Prediction: Current Pitfalls
and New Benchmarking [66.83273589348758]
Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges of a graph.
A flurry of methods have been introduced in recent years that attempt to make use of graph neural networks (GNNs) for this task.
New and diverse datasets have also been created to better evaluate the effectiveness of these new models.
arXiv Detail & Related papers (2023-06-18T01:58:59Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
We develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations.
Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup.
arXiv Detail & Related papers (2023-05-31T16:19:13Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.