Provably Accurate Shapley Value Estimation via Leverage Score Sampling
- URL: http://arxiv.org/abs/2410.01917v1
- Date: Wed, 2 Oct 2024 18:15:48 GMT
- Title: Provably Accurate Shapley Value Estimation via Leverage Score Sampling
- Authors: Christopher Musco, R. Teal Witter,
- Abstract summary: We introduce Leverage SHAP, a light-weight modification of Kernel SHAP that provides provably accurate Shapley value estimates with just $O(nlog n)$ model evaluations.
Our approach takes advantage of a connection between Shapley value estimation and active learning by employing leverage score sampling, a powerful regression tool.
- Score: 12.201705893125775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Originally introduced in game theory, Shapley values have emerged as a central tool in explainable machine learning, where they are used to attribute model predictions to specific input features. However, computing Shapley values exactly is expensive: for a general model with $n$ features, $O(2^n)$ model evaluations are necessary. To address this issue, approximation algorithms are widely used. One of the most popular is the Kernel SHAP algorithm, which is model agnostic and remarkably effective in practice. However, to the best of our knowledge, Kernel SHAP has no strong non-asymptotic complexity guarantees. We address this issue by introducing Leverage SHAP, a light-weight modification of Kernel SHAP that provides provably accurate Shapley value estimates with just $O(n\log n)$ model evaluations. Our approach takes advantage of a connection between Shapley value estimation and agnostic active learning by employing leverage score sampling, a powerful regression tool. Beyond theoretical guarantees, we show that Leverage SHAP consistently outperforms even the highly optimized implementation of Kernel SHAP available in the ubiquitous SHAP library [Lundberg & Lee, 2017].
Related papers
- Improving the Sampling Strategy in KernelSHAP [0.8057006406834466]
KernelSHAP framework enables us to approximate the Shapley values using a sampled subset of weighted conditional expectations.
We propose three main novel contributions: a stabilizing technique to reduce the variance of the weights in the current state-of-the-art strategy, a novel weighing scheme that corrects the Shapley kernel weights based on sampled subsets, and a straightforward strategy that includes the important subsets and integrates them with the corrected Shapley kernel weights.
arXiv Detail & Related papers (2024-10-07T10:02:31Z) - Energy-based Model for Accurate Shapley Value Estimation in Interpretable Deep Learning Predictive Modeling [7.378438977893025]
EmSHAP is an energy-based model for Shapley value estimation.
It estimates the expectation of Shapley contribution function under arbitrary subset of features.
arXiv Detail & Related papers (2024-04-01T12:19:33Z) - Accelerated Shapley Value Approximation for Data Evaluation [3.707457963532597]
We show that Shapley value of data points can be approximated more efficiently by leveraging structural properties of machine learning problems.
Our analysis suggests that in fact models trained on small subsets are more important in context of data valuation.
arXiv Detail & Related papers (2023-11-09T13:15:36Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Fast Shapley Value Estimation: A Unified Approach [71.92014859992263]
We propose a straightforward and efficient Shapley estimator, SimSHAP, by eliminating redundant techniques.
In our analysis of existing approaches, we observe that estimators can be unified as a linear transformation of randomly summed values from feature subsets.
Our experiments validate the effectiveness of our SimSHAP, which significantly accelerates the computation of accurate Shapley values.
arXiv Detail & Related papers (2023-11-02T06:09:24Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - An Efficient Shapley Value Computation for the Naive Bayes Classifier [0.0]
This article proposes an exact analytic expression of Shapley values in the case of the naive Bayes classifier.
Results show that our Shapley proposal for the naive Bayes provides informative results with low algorithmic complexity.
arXiv Detail & Related papers (2023-07-31T14:39:10Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
We develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations.
Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup.
arXiv Detail & Related papers (2023-05-31T16:19:13Z) - Generalized Differentiable RANSAC [95.95627475224231]
$nabla$-RANSAC is a differentiable RANSAC that allows learning the entire randomized robust estimation pipeline.
$nabla$-RANSAC is superior to the state-of-the-art in terms of accuracy while running at a similar speed to its less accurate alternatives.
arXiv Detail & Related papers (2022-12-26T15:13:13Z) - A $k$-additive Choquet integral-based approach to approximate the SHAP
values for local interpretability in machine learning [8.637110868126546]
This paper aims at providing some interpretability for machine learning models based on Shapley values.
A SHAP-based method called Kernel SHAP adopts an efficient strategy that approximates such values with less computational effort.
The obtained results attest that our proposal needs less computations on coalitions of attributes to approximate the SHAP values.
arXiv Detail & Related papers (2022-11-03T22:34:50Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.