Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization
- URL: http://arxiv.org/abs/2407.16554v1
- Date: Tue, 23 Jul 2024 15:07:52 GMT
- Title: Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization
- Authors: Junyan Wu, Wei Lu, Xiangyang Luo, Rui Yang, Qian Wang, Xiaochun Cao,
- Abstract summary: We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
- Score: 60.899082019130766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, a novel form of audio partial forgery has posed challenges to its forensics, requiring advanced countermeasures to detect subtle forgery manipulations within long-duration audio. However, existing countermeasures still serve a classification purpose and fail to perform meaningful analysis of the start and end timestamps of partial forgery segments. To address this challenge, we introduce a novel coarse-to-fine proposal refinement framework (CFPRF) that incorporates a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization. Specifically, the FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions. The PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN. To learn robust discriminative features, we devise a difference-aware feature learning (DAFL) module guided by contrastive representation learning to enlarge the sensitive differences between different frames induced by minor manipulations. We further design a boundary-aware feature enhancement (BAFE) module to capture the contextual information of multiple transition boundaries and guide the interaction between boundary information and temporal features via a cross-attention mechanism. Extensive experiments show that our CFPRF achieves state-of-the-art performance on various datasets, including LAV-DF, ASVS2019PS, and HAD.
Related papers
- Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
This paper proposes a new framework, namely MoNFAP, specifically tailored for multi-face manipulation detection and localization.
The framework incorporates two novel modules: the Forgery-aware Unified Predictor (FUP) Module and the Mixture-of-Noises Module (MNM)
arXiv Detail & Related papers (2024-08-05T08:35:59Z) - Enhancing Partially Spoofed Audio Localization with Boundary-aware Attention Mechanism [17.468808107791265]
We propose a novel method called Boundary-aware Attention Mechanism (BAM)
BAM consists of two core modules: Boundary Enhancement and Boundary Frame-wise Attention.
Experimental results on PartialSpoof database demonstrate our proposed method achieves the best performance.
arXiv Detail & Related papers (2024-07-31T13:49:17Z) - FANet: Feature Amplification Network for Semantic Segmentation in Cluttered Background [9.970265640589966]
Existing deep learning approaches leave out the semantic cues that are crucial in semantic segmentation present in complex scenarios.
We propose a feature amplification network (FANet) as a backbone network that incorporates semantic information using a novel feature enhancement module at multi-stages.
Our experimental results demonstrate the state-of-the-art performance compared to existing methods.
arXiv Detail & Related papers (2024-07-12T15:57:52Z) - Deformable Feature Alignment and Refinement for Moving Infrared Dim-small Target Detection [17.765101100010224]
We propose a Deformable Feature Alignment and Refinement (DFAR) method based on deformable convolution to explicitly use motion context in both the training and inference stages.
The proposed DFAR method achieves the state-of-the-art performance on two benchmark datasets including DAUB and IRDST.
arXiv Detail & Related papers (2024-07-10T00:42:25Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
We introduce DiffVein, a unified diffusion model-based framework which simultaneously addresses vein segmentation and authentication tasks.
For better feature interaction between these two branches, we introduce two specialized modules.
In this way, our framework allows for a dynamic interplay between diffusion and segmentation embeddings.
arXiv Detail & Related papers (2024-02-03T06:49:42Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - Overhead Line Defect Recognition Based on Unsupervised Semantic
Segmentation [8.672676348736834]
Overhead line inspection greatly benefits from defect recognition using visible light imagery.
This paper introduces a novel defect recognition framework built on the Faster RCNN network.
arXiv Detail & Related papers (2023-11-02T03:52:59Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
We propose a unified framework calledInter-class DiscrepancyAlignment(IDA)
IDA-DAO is used to align the similarity scores considering the discrepancy between the images and its neighbors.
IDA-SSE can provide convincing inter-class neighbors by introducing virtual candidate images generated with GAN.
arXiv Detail & Related papers (2021-03-02T08:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.