Overhead Line Defect Recognition Based on Unsupervised Semantic
Segmentation
- URL: http://arxiv.org/abs/2311.00979v2
- Date: Wed, 6 Dec 2023 23:51:11 GMT
- Title: Overhead Line Defect Recognition Based on Unsupervised Semantic
Segmentation
- Authors: Weixi Wang, Xichen Zhong, Xin Li, Sizhe Li, Xun Ma
- Abstract summary: Overhead line inspection greatly benefits from defect recognition using visible light imagery.
This paper introduces a novel defect recognition framework built on the Faster RCNN network.
- Score: 8.672676348736834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Overhead line inspection greatly benefits from defect recognition using
visible light imagery. Addressing the limitations of existing feature
extraction techniques and the heavy data dependency of deep learning
approaches, this paper introduces a novel defect recognition framework. This is
built on the Faster RCNN network and complemented by unsupervised semantic
segmentation. The approach involves identifying the type and location of the
target equipment, utilizing semantic segmentation to differentiate between the
device and its backdrop, and finally employing similarity measures and logical
rules to categorize the type of defect. Experimental results indicate that this
methodology focuses more on the equipment rather than the defects when
identifying issues in overhead lines. This leads to a notable enhancement in
accuracy and exhibits impressive adaptability. Thus, offering a fresh
perspective for automating the inspection of distribution network equipment.
Related papers
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
We introduce a frame-level detection network (FDN) and a proposal refinement network (PRN) for audio temporal forgery detection and localization.
FDN aims to mine informative inconsistency cues between real and fake frames to obtain discriminative features that are beneficial for roughly indicating forgery regions.
PRN is responsible for predicting confidence scores and regression offsets to refine the coarse-grained proposals derived from the FDN.
arXiv Detail & Related papers (2024-07-23T15:07:52Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
We propose a simple yet effective deepfake detector called LSDA.
It is based on a idea: representations with a wider variety of forgeries should be able to learn a more generalizable decision boundary.
We show that our proposed method is surprisingly effective and transcends state-of-the-art detectors across several widely used benchmarks.
arXiv Detail & Related papers (2023-11-19T09:41:10Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
arXiv Detail & Related papers (2023-07-27T17:22:41Z) - Learning Prompt-Enhanced Context Features for Weakly-Supervised Video
Anomaly Detection [37.99031842449251]
Video anomaly detection under weak supervision presents significant challenges.
We present a weakly supervised anomaly detection framework that focuses on efficient context modeling and enhanced semantic discriminability.
Our approach significantly improves the detection accuracy of certain anomaly sub-classes, underscoring its practical value and efficacy.
arXiv Detail & Related papers (2023-06-26T06:45:16Z) - Anomaly Detection with Adversarially Learned Perturbations of Latent
Space [9.473040033926264]
Anomaly detection is to identify samples that do not conform to the distribution of the normal data.
In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder.
The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.
arXiv Detail & Related papers (2022-07-03T19:32:00Z) - Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks [0.0]
This thesis proposes a framework to learn spatial-temporal aspects of raw network traffic in an unsupervised and protocol-agnostic manner.
The learned representations are used to measure the effect on the results of a subsequent anomaly detection.
arXiv Detail & Related papers (2022-04-20T09:22:41Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.