論文の概要: From Imitation to Refinement -- Residual RL for Precise Assembly
- arxiv url: http://arxiv.org/abs/2407.16677v4
- Date: Thu, 12 Dec 2024 18:40:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:00:45.994726
- Title: From Imitation to Refinement -- Residual RL for Precise Assembly
- Title(参考訳): イミテーションからリファインメントへ -精密な組み立てのための残留RL-
- Authors: Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, Pulkit Agrawal,
- Abstract要約: 近年のビヘイビア・クローン(BC)の進歩により、ロボットに新しいタスクを教えるのが容易になった。
しかし、教育の容易さは信頼性の低いパフォーマンスを犠牲にしている。
我々は,BCの教えやすさと長期的能力を維持しながら信頼性を克服する,シンプルで効果的な方法であるResiPを考案した。
- 参考スコア(独自算出の注目度): 19.9786629249219
- License:
- Abstract: Recent advances in Behavior Cloning (BC) have made it easy to teach robots new tasks. However, we find that the ease of teaching comes at the cost of unreliable performance that saturates with increasing data for tasks requiring precision. The performance saturation can be attributed to two critical factors: (a) distribution shift resulting from the use of offline data and (b) the lack of closed-loop corrective control caused by action chucking (predicting a set of future actions executed open-loop) critical for BC performance. Our key insight is that by predicting action chunks, BC policies function more like trajectory "planners" than closed-loop controllers necessary for reliable execution. To address these challenges, we devise a simple yet effective method, ResiP (Residual for Precise Manipulation), that overcomes the reliability problem while retaining BC's ease of teaching and long-horizon capabilities. ResiP augments a frozen, chunked BC model with a fully closed-loop residual policy trained with reinforcement learning (RL) that addresses distribution shifts and introduces closed-loop corrections over open-loop execution of action chunks predicted by the BC trajectory planner. Videos, code, and data: https://residual-assembly.github.io.
- Abstract(参考訳): 近年のビヘイビア・クローン(BC)の進歩により、ロボットに新しいタスクを教えるのが容易になった。
しかし, 授業の容易さは, 正確性を必要とするタスクに対して, データの増大とともに飽和する信頼できないパフォーマンスのコストが伴うことがわかった。
性能飽和は2つの重要な要因に起因する可能性がある。
(a)オフラインデータの使用による分散シフト
b) 動作停止(将来の動作の予測)による閉ループ補正制御の欠如は、BCパフォーマンスにとって重要な問題である。
私たちのキーとなる洞察は、アクションチャンクを予測することで、BCポリシーは信頼できる実行に必要なクローズドループコントローラよりも、軌道上の"プランナ"のように機能するということです。
これらの課題に対処するために、BCの教えやすさと長期的能力を維持しながら信頼性を克服する、単純で効果的な方法であるResiP(Residual for Precise Manipulation)を考案した。
ResiPは、分散シフトに対処する強化学習(RL)で訓練された完全閉ループ残留ポリシーで、BCの軌道プランナーによって予測されるアクションチャンクのオープンループ実行に対して、クローズループ補正を導入する、凍結されたチャンク化されたBCモデルを強化する。
ビデオ、コード、データ:https://residual-assembly.github.io
関連論文リスト
- Diffusion Predictive Control with Constraints [51.91057765703533]
制約付き拡散予測制御(DPCC)
トレーニングデータから逸脱可能な、明示的な状態と行動制約を持つ拡散制御アルゴリズム。
DPCCは,学習した制御タスクの性能を維持しつつ,新しいテスト時間制約を満たす上で,既存の手法よりも優れるロボットマニピュレータのシミュレーションを通して示す。
論文 参考訳(メタデータ) (2024-12-12T15:10:22Z) - Learning Model Predictive Control Parameters via Bayesian Optimization for Battery Fast Charging [0.0]
モデル予測制御(MPC)のチューニングパラメータは、特に制御器の予測と閉ループプラントの挙動に顕著な相違がある場合、重要な課題を示す。
本研究では,バッテリ高速充電の閉ループ性能向上を目的とした,未知のモデルパラメータとパラメータ化された制約バックオフ項の効率的な学習にベイズ最適化を適用した。
論文 参考訳(メタデータ) (2024-04-09T08:49:41Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Improving TD3-BC: Relaxed Policy Constraint for Offline Learning and
Stable Online Fine-Tuning [7.462336024223669]
主な課題は、データに存在しないアクションに対する過大評価バイアスを克服することである。
このバイアスを減らすための簡単な方法は、行動的クローニング(BC)を通じてポリシー制約を導入することである。
私たちは、BCコンポーネントの影響を減らしながら、ポリシーをオフラインでトレーニングし続けることで、洗練されたポリシーを作成できることを実証します。
論文 参考訳(メタデータ) (2022-11-21T19:10:27Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
オフライン強化学習(RL)は、学習ポリシーとデータセットの分散シフトによって問題となる。
本稿では,データセットの再サンプリングが分散サポートを一定に保っているという観察に基づいて,オフラインRLアルゴリズムをシンプルかつ効果的に向上させる手法を提案する。
ReD(Return-based Data Re Balance)メソッドをダブします。これは10行未満のコード変更で実装でき、無視できる実行時間を追加します。
論文 参考訳(メタデータ) (2022-10-17T16:34:01Z) - ConserWeightive Behavioral Cloning for Reliable Offline Reinforcement
Learning [27.322942155582687]
オフライン強化学習(RL)の目標は、静的なログ付きデータセットからほぼ最適なポリシを学ぶことで、高価なオンラインインタラクションをサイドステッピングすることにある。
行動クローン(BC)は、教師あり学習を通じてオフラインの軌跡を模倣することで、オフラインRLに対する簡単なソリューションを提供する。
オフラインRLにおける条件付きBCの性能を向上させるために,ConserWeightive Behavioral Cloning (CWBC)を提案する。
論文 参考訳(メタデータ) (2022-10-11T05:37:22Z) - Improving the Efficiency of Off-Policy Reinforcement Learning by
Accounting for Past Decisions [20.531576904743282]
オフ政治推定バイアスは、決定ごとに補正される。
Tree BackupやRetraceといったオフポリティクスアルゴリズムはこのメカニズムに依存している。
任意の過去のトレースを許可するマルチステップ演算子を提案する。
論文 参考訳(メタデータ) (2021-12-23T00:07:28Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。