論文の概要: Can Large Language Models Automatically Jailbreak GPT-4V?
- arxiv url: http://arxiv.org/abs/2407.16686v1
- Date: Tue, 23 Jul 2024 17:50:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 16:16:18.577767
- Title: Can Large Language Models Automatically Jailbreak GPT-4V?
- Title(参考訳): 大規模言語モデルでは GPT-4V が自動脱獄可能か?
- Authors: Yuanwei Wu, Yue Huang, Yixin Liu, Xiang Li, Pan Zhou, Lichao Sun,
- Abstract要約: 本稿では,迅速な最適化にインスパイアされた革新的な自動ジェイルブレイク技術であるAutoJailbreakを紹介する。
実験の結果,AutoJailbreakは従来の手法をはるかに上回り,95.3%を超えるアタック成功率(ASR)を達成した。
この研究は、GPT-4Vのセキュリティ強化に光を当て、LCMがGPT-4Vの完全性向上に活用される可能性を強調している。
- 参考スコア(独自算出の注目度): 64.04997365446468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GPT-4V has attracted considerable attention due to its extraordinary capacity for integrating and processing multimodal information. At the same time, its ability of face recognition raises new safety concerns of privacy leakage. Despite researchers' efforts in safety alignment through RLHF or preprocessing filters, vulnerabilities might still be exploited. In our study, we introduce AutoJailbreak, an innovative automatic jailbreak technique inspired by prompt optimization. We leverage Large Language Models (LLMs) for red-teaming to refine the jailbreak prompt and employ weak-to-strong in-context learning prompts to boost efficiency. Furthermore, we present an effective search method that incorporates early stopping to minimize optimization time and token expenditure. Our experiments demonstrate that AutoJailbreak significantly surpasses conventional methods, achieving an Attack Success Rate (ASR) exceeding 95.3\%. This research sheds light on strengthening GPT-4V security, underscoring the potential for LLMs to be exploited in compromising GPT-4V integrity.
- Abstract(参考訳): GPT-4Vは、マルチモーダル情報の統合と処理に異常な能力があるため、かなりの注目を集めている。
同時に、顔認識能力は、プライバシー漏洩に対する新たな安全上の懸念を提起する。
RLHFや前処理フィルタによる安全性確保への研究者の努力にもかかわらず、脆弱性はいまだに悪用されている。
本研究では,迅速な最適化にインスパイアされた革新的自動ジェイルブレイク技術であるAutoJailbreakを紹介する。
我々は、大規模言語モデル(LLM)をレッドチームに活用し、ジェイルブレイクのプロンプトを洗練させ、弱いテキスト内学習プロンプトを使用して効率を向上する。
さらに,最適化時間とトークン支出を最小化するために,早期停止を組み込んだ効率的な探索手法を提案する。
実験の結果,AutoJailbreakは従来の手法をはるかに上回り,95.3倍のアタック成功率(ASR)を達成した。
この研究は、GPT-4Vのセキュリティ強化に光を当て、LCMがGPT-4Vの完全性向上に活用される可能性を強調している。
関連論文リスト
- Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models [21.252514293436437]
解析ベースジェイルブレイク (ABJ) は大規模言語モデル (LLM) に対する効果的なジェイルブレイク攻撃法である
ABJはGPT-4-turbo-0409上で94.8%の攻撃成功率(ASR)と1.06の攻撃効率(AE)を達成する。
論文 参考訳(メタデータ) (2024-07-23T06:14:41Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - Unveiling the Safety of GPT-4o: An Empirical Study using Jailbreak Attacks [65.84623493488633]
本稿では,GPT-4oのジェイルブレイク攻撃に対する厳密な評価を行う。
新たに導入されたオーディオモダリティは、GPT-4oに対するジェイルブレイク攻撃のための新しい攻撃ベクトルを開く。
既存のブラックボックスマルチモーダル・ジェイルブレイク攻撃は、GPT-4oとGPT-4Vに対してほとんど効果がない。
論文 参考訳(メタデータ) (2024-06-10T14:18:56Z) - GPT-4 Jailbreaks Itself with Near-Perfect Success Using Self-Explanation [9.377563769107843]
IRIS(Iterative Refinement induced Self-Jailbreak)は,ブラックボックスアクセスのみのジェイルブレイクに対する新しいアプローチである。
以前の方法とは異なり、IRISは単一のモデルを攻撃者とターゲットの両方として使用することで、ジェイルブレイクプロセスを単純化する。
その結果, GPT-4で98%, GPT-4 Turboで92%のIRISジェイルブレイク成功率は7問未満であった。
論文 参考訳(メタデータ) (2024-05-21T03:16:35Z) - Comprehensive Assessment of Jailbreak Attacks Against LLMs [28.58973312098698]
4つのカテゴリから13の最先端ジェイルブレイク法,16の違反カテゴリから160の質問,6つの人気のあるLDMについて検討した。
実験の結果, 最適化されたジェイルブレイクは高い攻撃成功率を確実に達成することが示された。
攻撃性能と効率のトレードオフについて論じるとともに、脱獄プロンプトの転送性は依然として維持可能であることを示す。
論文 参考訳(メタデータ) (2024-02-08T13:42:50Z) - How Johnny Can Persuade LLMs to Jailbreak Them: Rethinking Persuasion to
Challenge AI Safety by Humanizing LLMs [66.05593434288625]
本稿では, 大規模言語モデル (LLM) を人間のようなコミュニケーション手段として, ジェイルブレイクの新たな視点を紹介する。
本研究では,数十年にわたる社会科学研究から派生した説得的分類法を適用し,説得的敵対的プロンプト(PAP)をジェイルブレイク LLM に適用する。
PAPは、Llama 2-7b Chat、GPT-3.5、GPT-4の攻撃成功率を10ドルで一貫して92%以上達成している。
防衛面では,PAPに対する様々なメカニズムを探索し,既存の防衛に重大なギャップがあることを見出した。
論文 参考訳(メタデータ) (2024-01-12T16:13:24Z) - Jailbreaking GPT-4V via Self-Adversarial Attacks with System Prompts [64.60375604495883]
GPT-4Vでは,システムに侵入する脆弱性が発見された。
GPT-4を自身に対するレッド・チーム・ツールとして活用することで、盗難システムプロンプトを利用した脱獄プロンプトの可能性を探索することを目指している。
また,システムプロンプトの変更による脱獄攻撃に対する防御効果も評価した。
論文 参考訳(メタデータ) (2023-11-15T17:17:39Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。