論文の概要: Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models
- arxiv url: http://arxiv.org/abs/2407.16205v3
- Date: Tue, 13 Aug 2024 13:46:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 21:54:47.269498
- Title: Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models
- Title(参考訳): 分析に基づく大規模言語モデルに対するジェイルブレイク攻撃
- Authors: Shi Lin, Rongchang Li, Xun Wang, Changting Lin, Wenpeng Xing, Meng Han,
- Abstract要約: 大規模言語モデル(LLM)に対するジェイルブレイク攻撃に対する分析ベースジェイルブレイク(ABJ)を提案する。
ABJはGPT-4-turbo-0409上で94.8%の攻撃成功率(ASR)と1.06の攻撃効率(AE)を達成する。
- 参考スコア(独自算出の注目度): 21.252514293436437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of Large Language Models (LLMs) has brought remarkable generative capabilities across diverse tasks. However, despite the impressive achievements, these LLMs still have numerous inherent vulnerabilities, particularly when faced with jailbreak attacks. By investigating jailbreak attacks, we can uncover hidden weaknesses in LLMs and inform the development of more robust defense mechanisms to fortify their security. In this paper, we further explore the boundary of jailbreak attacks on LLMs and propose Analyzing-based Jailbreak (ABJ). This effective jailbreak attack method takes advantage of LLMs' growing analyzing and reasoning capability and reveals their underlying vulnerabilities when facing analyzing-based tasks. We conduct a detailed evaluation of ABJ across various open-source and closed-source LLMs, which achieves 94.8% attack success rate (ASR) and 1.06 attack efficiency (AE) on GPT-4-turbo-0409, demonstrating state-of-the-art attack effectiveness and efficiency. Our research highlights the importance of prioritizing and enhancing the safety of LLMs to mitigate the risks of misuse. The code is publicly available at hhttps://github.com/theshi-1128/ABJ-Attack. Warning: This paper contains examples of LLMs that might be offensive or harmful.
- Abstract(参考訳): LLM(Large Language Models)の急速な開発は、様々なタスクにまたがって顕著な生成能力をもたらしました。
しかし、驚くべき成果にもかかわらず、これらのLSMには、特にジェイルブレイク攻撃に直面している場合に、多くの固有の脆弱性がある。
脱獄攻撃を捜査することで、LLMの隠れた弱点を解明し、より堅牢な防御機構を開発して彼らのセキュリティを固めることが可能になる。
本稿では,LLMに対するジェイルブレイク攻撃の境界についてさらに検討し,解析に基づくジェイルブレイク(ABJ)を提案する。
この効果的なジェイルブレイク攻撃法は、LLMの増大する分析と推論能力を活用し、解析ベースのタスクに直面した際の基盤となる脆弱性を明らかにする。
我々は、GPT-4-turbo-0409上で94.8%の攻撃成功率(ASR)と1.06の攻撃効率(AE)を達成し、様々なオープンソースおよびクローズドソース LLM のABJ の詳細な評価を行い、最先端の攻撃効率と効率を示す。
本研究は, 誤用リスクを軽減するため, LLMの安全性を優先し, 向上することの重要性を強調した。
コードはhhttps://github.com/theshi-1128/ABJ-Attack.comで公開されている。
警告: 本論文は、攻撃的または有害なLSMの例を含む。
関連論文リスト
- You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
脱獄防御戦略によるLCMの実用性低下, 安全性向上, 過大に安全なエスカレーションについて検討した。
主流のジェイルブレイク防御は、安全性とパフォーマンスの両方を同時に確保できないことに気付きました。
論文 参考訳(メタデータ) (2025-01-21T15:24:29Z) - LLM-Virus: Evolutionary Jailbreak Attack on Large Language Models [59.29840790102413]
既存のジェイルブレイク攻撃は主に不透明な最適化手法と勾配探索法に基づいている。
進化的ジェイルブレイクと呼ばれる進化的アルゴリズムに基づくジェイルブレイク攻撃手法であるLSM-Virusを提案する。
この結果から, LLM-Virus は既存の攻撃手法と比較して, 競争力や性能に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-12-28T07:48:57Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
大規模言語モデル(LLM)は、出現するジェイルブレイク攻撃に対してますます脆弱である。
この脆弱性は現実世界のアプリケーションに重大なリスクをもたらす。
本稿では,ガイドラインLLMという新しい防御パラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-10T12:42:33Z) - Targeting the Core: A Simple and Effective Method to Attack RAG-based Agents via Direct LLM Manipulation [4.241100280846233]
大規模言語モデル(LLM)を駆使したAIエージェントは、シームレスで自然な、コンテキスト対応のコミュニケーションを可能にすることによって、人間とコンピュータのインタラクションを変革した。
本稿では,AIエージェント内のLLMコアを標的とした敵攻撃という,重大な脆弱性について検討する。
論文 参考訳(メタデータ) (2024-12-05T18:38:30Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
LLMの外部特性をターゲットとした新しいジェイルブレイク手法を提案する。
ユーザプロンプトにジェイルブレイク情報を注入することで、SIJは有害なコンテンツを出力するモデルをうまく誘導する。
本稿では,SIJに対抗するために,セルフリマインダーキーと呼ばれる単純な防御手法を提案する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
ジェイルブレイク攻撃は、大きな言語モデルを操作して有害なコンテンツを生成する。
Jailbreak Antidoteは、モデルの内部状態のスパースサブセットを操作することで、安全優先のリアルタイム調整を可能にする。
解析の結果,LLMの安全性関連情報はわずかに分散していることがわかった。
論文 参考訳(メタデータ) (2024-10-03T08:34:17Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。