論文の概要: Cluster Model for parsimonious selection of variables and enhancing Students Employability Prediction
- arxiv url: http://arxiv.org/abs/2407.16884v1
- Date: Wed, 5 Jun 2024 06:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:45:45.374851
- Title: Cluster Model for parsimonious selection of variables and enhancing Students Employability Prediction
- Title(参考訳): 変数の相似選択のためのクラスタモデルと学生の就業率予測の強化
- Authors: Pooja Thakar, Anil Mehta, Manisha,
- Abstract要約: 教育におけるデータは一般的に非常に大きく、多次元であり、自然界では不均衡である。
本稿では,様々な大学や大学から,MCA(Masters in Computer Applications)の学生データを収集する。
本論文では, 前処理段階に適用されたクラスタモデルを用いて, 変数の相似選択を行う。
- 参考スコア(独自算出の注目度): 1.4610685586329806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Educational Data Mining (EDM) is a promising field, where data mining is widely used for predicting students performance. One of the most prevalent and recent challenge that higher education faces today is making students skillfully employable. Institutions possess large volume of data; still they are unable to reveal knowledge and guide their students. Data in education is generally very large, multidimensional and unbalanced in nature. Process of extracting knowledge from such data has its own set of problems and is a very complicated task. In this paper, Engineering and MCA (Masters in Computer Applications) students data is collected from various universities and institutes pan India. The dataset is large, unbalanced and multidimensional in nature. A cluster based model is presented in this paper, which, when applied at preprocessing stage helps in parsimonious selection of variables and improves the performance of predictive algorithms. Hence, facilitate in better prediction of Students Employability.
- Abstract(参考訳): 教育データマイニング(EDM: Educational Data Mining)は、データマイニングが学生のパフォーマンス予測に広く利用されている、有望な分野である。
高等教育が直面する最も一般的かつ最近の課題の1つは、生徒を巧みに雇用できるようにすることである。
施設は大量のデータを持っているが、それでも知識を明らかにして生徒を指導することはできない。
教育におけるデータは一般的に非常に大きく、多次元であり、自然界では不均衡である。
このようなデータから知識を抽出するプロセスには、独自の問題セットがあり、非常に複雑なタスクである。
本稿では,様々な大学や大学から,MCA(Masters in Computer Applications)の学生データを収集する。
データセットは、大きく、不均衡で、本質的に多次元である。
本稿では,前処理段階に適用されたクラスタベースモデルを用いて,変数のパーシミュニケートな選択を支援し,予測アルゴリズムの性能を向上させる。
したがって、学生の就労率の予測がより容易になる。
関連論文リスト
- DataEnvGym: Data Generation Agents in Teacher Environments with Student Feedback [62.235925602004535]
データ生成エージェントのための教師環境のテストベッドであるDataEnvGymを紹介する。
DataEnvGymはシーケンシャルな意思決定タスクとしてデータ生成をフレーム化する。
エージェントの目標は、生徒のパフォーマンスを改善することです。
我々は3つの多様なタスク(数学、コード、VQA)をサポートし、複数の学生と教師をテストする。
論文 参考訳(メタデータ) (2024-10-08T17:20:37Z) - How big is Big Data? [0.18472148461613155]
一般的な材料科学の機械学習問題において、それが何を意味するかを評価する。
モデルが類似したデータセットにどのように一般化するか、異種ソースから高品質なデータセットを収集できるかを問う。
ビッグデータには,作業のモチベーションを向上する上で,非常に異なる側面に沿って,ユニークな課題が存在していることが分かっています。
論文 参考訳(メタデータ) (2024-05-18T22:13:55Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - From Random to Informed Data Selection: A Diversity-Based Approach to
Optimize Human Annotation and Few-Shot Learning [38.30983556062276]
自然言語処理における大きな課題は、教師付き学習のための注釈付きデータを取得することである。
クラウドソーシングは、アノテータの経験、一貫性、バイアスに関連する問題を導入する。
本稿では,数ショット学習のための小さなデータセットを構築するための,自動的および情報的データ選択アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-24T04:57:32Z) - Multi-granulariy Time-based Transformer for Knowledge Tracing [9.788039182463768]
過去のテストスコアを含む学生の過去のデータを活用して、各学生にパーソナライズされたモデルを作成します。
次に、これらのモデルを使用して、将来のパフォーマンスを所定のテストで予測します。
論文 参考訳(メタデータ) (2023-04-11T14:46:38Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Can Population-based Engagement Improve Personalisation? A Novel Dataset
and Experiments [21.12546768556595]
VLEは、公開されている科学ビデオ講義から抽出されたコンテンツとビデオベースの特徴からなる、新しいデータセットである。
実験結果から,新たに提案したVLEデータセットがコンテキストに依存しないエンゲージメント予測モデルの構築につながることが示唆された。
構築したモデルとパーソナライズアルゴリズムを組み合わせる実験は、教育推薦者によるコールドスタート問題に対処する上で有望な改善を示す。
論文 参考訳(メタデータ) (2022-06-22T15:53:24Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
本稿では,教育プロセスデータの表現を学習するためのフレームワークを提案する。
我々のフレームワークは、BERT型の目的を用いて、シーケンシャルなプロセスデータから表現を学習する事前学習ステップで構成されています。
当社のフレームワークは,2019年国のレポートカードデータマイニングコンペティションデータセットに適用しています。
論文 参考訳(メタデータ) (2022-04-28T16:07:28Z) - Zero-shot meta-learning for small-scale data from human subjects [10.320654885121346]
我々は,サンプル外テストデータに対する限られたトレーニングデータを用いて,新しい予測タスクに迅速に適応するフレームワークを開発した。
本モデルでは, 介入による遅延処理効果を学習し, 設計上はマルチタスク予測を自然に処理できる。
我々のモデルは、より広い人口への小型人間研究の一般化を向上するために重要である。
論文 参考訳(メタデータ) (2022-03-29T17:42:04Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z) - Differentially Private Deep Learning with Smooth Sensitivity [144.31324628007403]
プライバシーに関する懸念を、差分プライバシーのレンズを通して研究する。
このフレームワークでは、モデルのトレーニングに使用されるデータの詳細が曖昧になるようにモデルを摂動することで、一般的にプライバシー保証が得られます。
過去の研究で使われた最も重要なテクニックの1つは、教師モデルのアンサンブルであり、ノイズの多い投票手順に基づいて生徒に情報を返す。
本研究では,イミュータブルノイズArgMaxと呼ばれるスムーズな感性を有する新しい投票機構を提案する。これは,ある条件下では,学生に伝達される有用な情報に影響を与えることなく,教師から非常に大きなランダムノイズを発生させることができる。
論文 参考訳(メタデータ) (2020-03-01T15:38:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。