A Nested Model for AI Design and Validation
- URL: http://arxiv.org/abs/2407.16888v2
- Date: Thu, 1 Aug 2024 11:46:26 GMT
- Title: A Nested Model for AI Design and Validation
- Authors: Akshat Dubey, Zewen Yang, Georges Hattab,
- Abstract summary: Despite the need for new regulations, there is a mismatch between regulatory science and AI.
A five-layer nested model for AI design and validation aims to address these issues.
- Score: 0.5120567378386615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing AI field faces trust, transparency, fairness, and discrimination challenges. Despite the need for new regulations, there is a mismatch between regulatory science and AI, preventing a consistent framework. A five-layer nested model for AI design and validation aims to address these issues and streamline AI application design and validation, improving fairness, trust, and AI adoption. This model aligns with regulations, addresses AI practitioner's daily challenges, and offers prescriptive guidance for determining appropriate evaluation approaches by identifying unique validity threats. We have three recommendations motivated by this model: authors should distinguish between layers when claiming contributions to clarify the specific areas in which the contribution is made and to avoid confusion, authors should explicitly state upstream assumptions to ensure that the context and limitations of their AI system are clearly understood, AI venues should promote thorough testing and validation of AI systems and their compliance with regulatory requirements.
Related papers
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
This paper introduces a framework ensuring that AI must be ethical, controllable, viable, and desirable.
Different case studies validate this framework by integrating AI in both academic and practical environments.
arXiv Detail & Related papers (2024-09-25T12:39:28Z) - The Dilemma of Uncertainty Estimation for General Purpose AI in the EU AI Act [6.9060054915724]
The AI act is the European Union-wide regulation of AI systems.
We argue that uncertainty estimation should be a required component for deploying models in the real world.
arXiv Detail & Related papers (2024-08-20T23:59:51Z) - An FDA for AI? Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence [0.0]
We explore the applicability of approval regulation -- that is, regulation of a product that combines experimental minima with government licensure conditioned partially or fully upon that experimentation -- to the regulation of frontier AI.
There are a number of reasons to believe that approval regulation, simplistically applied, would be inapposite for frontier AI risks.
We conclude by highlighting the role of policy learning and experimentation in regulatory development.
arXiv Detail & Related papers (2024-08-01T17:54:57Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
We argue that this is a significant way to bring ethical considerations into mathematical reasoning.
We demonstrate these ideas within the context of competing models used to advise the UK government on the spread of the Omicron variant of COVID-19 during December 2021.
arXiv Detail & Related papers (2023-09-11T15:13:36Z) - Statutory Professions in AI governance and their consequences for
explainable AI [2.363388546004777]
Intentional and accidental harms arising from the use of AI have impacted the health, safety and rights of individuals.
We propose that a statutory profession framework be introduced as a necessary part of the AI regulatory framework.
arXiv Detail & Related papers (2023-06-15T08:51:28Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI developers need to make verifiable claims to which they can be held accountable.
This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems.
We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.
arXiv Detail & Related papers (2020-04-15T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.