Exploring Fusion Techniques in Multimodal AI-Based Recruitment: Insights from FairCVdb
- URL: http://arxiv.org/abs/2407.16892v1
- Date: Mon, 17 Jun 2024 12:37:58 GMT
- Title: Exploring Fusion Techniques in Multimodal AI-Based Recruitment: Insights from FairCVdb
- Authors: Swati Swati, Arjun Roy, Eirini Ntoutsi,
- Abstract summary: We investigate the fairness and bias implications of multimodal fusion techniques in the context of multimodal AI-based recruitment systems.
Our results show that early-fusion closely matches the ground truth for both demographics, achieving the lowest MAEs.
In contrast, late-fusion leads to highly generalized mean scores and higher MAEs.
- Score: 4.420073761023326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the large body of work on fairness-aware learning for individual modalities like tabular data, images, and text, less work has been done on multimodal data, which fuses various modalities for a comprehensive analysis. In this work, we investigate the fairness and bias implications of multimodal fusion techniques in the context of multimodal AI-based recruitment systems using the FairCVdb dataset. Our results show that early-fusion closely matches the ground truth for both demographics, achieving the lowest MAEs by integrating each modality's unique characteristics. In contrast, late-fusion leads to highly generalized mean scores and higher MAEs. Our findings emphasise the significant potential of early-fusion for accurate and fair applications, even in the presence of demographic biases, compared to late-fusion. Future research could explore alternative fusion strategies and incorporate modality-related fairness constraints to improve fairness. For code and additional insights, visit: https://github.com/Swati17293/Multimodal-AI-Based-Recruitment-FairCVdb
Related papers
- Confidence-aware multi-modality learning for eye disease screening [58.861421804458395]
We propose a novel multi-modality evidential fusion pipeline for eye disease screening.
It provides a measure of confidence for each modality and elegantly integrates the multi-modality information.
Experimental results on both public and internal datasets demonstrate that our model excels in robustness.
arXiv Detail & Related papers (2024-05-28T13:27:30Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) is a learning framework that trains multiple single-modal feature extractors to enhance subsequent classification performance.
FedMM notably outperforms two baselines in accuracy and AUC metrics.
arXiv Detail & Related papers (2024-02-24T16:58:42Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - VERITE: A Robust Benchmark for Multimodal Misinformation Detection
Accounting for Unimodal Bias [17.107961913114778]
multimodal misinformation is a growing problem on social media platforms.
In this study, we investigate and identify the presence of unimodal bias in widely-used MMD benchmarks.
We introduce a new method -- termed Crossmodal HArd Synthetic MisAlignment (CHASMA) -- for generating realistic synthetic training data.
arXiv Detail & Related papers (2023-04-27T12:28:29Z) - Learning with MISELBO: The Mixture Cookbook [62.75516608080322]
We present the first ever mixture of variational approximations for a normalizing flow-based hierarchical variational autoencoder (VAE) with VampPrior and a PixelCNN decoder network.
We explain this cooperative behavior by drawing a novel connection between VI and adaptive importance sampling.
We obtain state-of-the-art results among VAE architectures in terms of negative log-likelihood on the MNIST and FashionMNIST datasets.
arXiv Detail & Related papers (2022-09-30T15:01:35Z) - Does a Technique for Building Multimodal Representation Matter? --
Comparative Analysis [0.0]
We show that the choice of the technique for building multimodal representation is crucial to obtain the highest possible model's performance.
Experiments are conducted on three datasets: Amazon Reviews, MovieLens25M, and MovieLens1M.
arXiv Detail & Related papers (2022-06-09T21:30:10Z) - Learning Multimodal VAEs through Mutual Supervision [72.77685889312889]
MEME combines information between modalities implicitly through mutual supervision.
We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes.
arXiv Detail & Related papers (2021-06-23T17:54:35Z) - Survey on Deep Multi-modal Data Analytics: Collaboration, Rivalry and
Fusion [6.225190099424806]
Multi-modal or multi-view data has surged as a major stream for big data, where each modal/view encodes individual property of data objects.
Most of the existing state-of-the-art focused on how to fuse the energy or information from multi-modal spaces to deliver a superior performance.
Deep neural networks have exhibited as a powerful architecture to well capture the nonlinear distribution of high-dimensional multimedia data.
arXiv Detail & Related papers (2020-06-15T06:42:04Z) - Investigating Vulnerability to Adversarial Examples on Multimodal Data
Fusion in Deep Learning [32.125310341415755]
We investigated whether the current multimodal fusion model utilizes the complementary intelligence to defend against adversarial attacks.
We verified that the multimodal fusion model optimized for better prediction is still vulnerable to adversarial attack, even if only one of the sensors is attacked.
arXiv Detail & Related papers (2020-05-22T03:45:06Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.