論文の概要: Estimating the Increase in Emissions caused by AI-augmented Search
- arxiv url: http://arxiv.org/abs/2407.16894v1
- Date: Mon, 17 Jun 2024 13:52:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:45:45.358455
- Title: Estimating the Increase in Emissions caused by AI-augmented Search
- Title(参考訳): AI強化探索によるエミッション増加の推定
- Authors: Wim Vanderbauwhede,
- Abstract要約: 我々の推計では、エネルギー需要は60~70倍増加する。
これは、従来の探索におけるエネルギー消費の最新の推定に基づいている。
BLOOMモデル, 176Bパラメータモデル, OpenAI の ChatGPT に対するクエリのエネルギー需要に関する最近の研究。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: AI-generated answers to conventional search queries dramatically increase the energy consumption. By our estimates, energy demand increase by 60-70 times. This is a based on an updated estimate of energy consumption for conventional search and recent work on the energy demand of queries to the BLOOM model, a 176B parameter model, and OpenAI's ChatGPT, which is of similar complexity.
- Abstract(参考訳): 従来の検索クエリに対するAI生成の回答は、エネルギー消費を劇的に増加させる。
我々の推計では、エネルギー需要は60~70倍増加する。
これは、従来の検索におけるエネルギー消費量の更新と、BLOOMモデル、176Bパラメータモデル、OpenAIのChatGPTに対するクエリのエネルギー需要に関する最近の研究に基づいている。
関連論文リスト
- Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - Accuracy is not the only Metric that matters: Estimating the Energy
Consumption of Deep Learning Models [33.45069308137142]
我々は、実践者が実際に走ったり訓練したりすることなく、事前にモデルのエネルギー需要を見積もることができるエネルギー推定パイプライン1を作成しました。
そこで我々は,高品質なエネルギーデータを収集し,推定層エネルギーを蓄積することによりDLモデルのエネルギー消費を予測できる第1ベースラインモデルを構築した。
論文 参考訳(メタデータ) (2023-04-03T11:35:10Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
本稿では,異なるタイプの計算ノード上でのディープラーニングモデルの典型的な2つの応用のエネルギー消費の測定を行う。
我々のアプローチの1つの利点は、スーパーコンピュータの全ユーザーがエネルギー消費に関する情報を利用できることである。
論文 参考訳(メタデータ) (2022-12-03T21:40:55Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
176ビリオンパラメータ言語モデルBLOOMの炭素フットプリントを,そのライフサイクルにわたって定量化する。
BLOOMの最終訓練で約24.7トンのカルボネックが放出されたと推定する。
本稿では,機械学習モデルの炭素フットプリントを正確に推定することの難しさについて論じる。
論文 参考訳(メタデータ) (2022-11-03T17:13:48Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
eco2AIでは、エネルギー消費の追跡と地域CO2排出量の正当性に重点を置いている。
モチベーションは、サステナブルAIとグリーンAI経路の両方で、AIベースの温室効果ガスの隔離サイクルの概念からもたらされる。
論文 参考訳(メタデータ) (2022-07-31T09:34:53Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
本研究は,多段階家庭電力消費予測のための2つのハイブリッドキャスケードモデルを提案する。
提案したハイブリッドモデルでは,既存のマルチステップ電力消費予測手法よりも優れた予測性能が得られる。
論文 参考訳(メタデータ) (2022-07-06T11:02:23Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
コンピュータビジョンと自然言語処理の分野における関連モデルについて検討する。
継続的な性能向上のために、これまで予想されていたよりもエネルギー消費の軟化が見られた。
論文 参考訳(メタデータ) (2021-09-12T09:40:18Z) - ECO: Enabling Energy-Neutral IoT Devices through Runtime Allocation of
Harvested Energy [0.8774604259603302]
本稿では,エネルギー制約下での目標デバイスの有用性を最適化するランタイムベースのエネルギー配分フレームワークを提案する。
提案フレームワークは, 効率的な反復アルゴリズムを用いて, 初期エネルギー割り当てを1日の初めに計算する。
このフレームワークは、太陽と運動エネルギーの収穫モードと、4772の異なるユーザーからのアメリカンタイムユースサーベイデータを使用して評価します。
論文 参考訳(メタデータ) (2021-02-26T17:21:25Z) - $E^3$: Visual Exploration of Spatiotemporal Energy Demand [11.3457742898176]
エネルギー需要問題の鍵となる要素を同定する。
これまでの調査では需要の変化は調査されていない。
ポテンシャルフローに基づくアプローチは、エネルギー需要の変化をモデル化するために形式化された。
専門家は、サーバの実環境電気データのケーススタディを通じて、このアプローチの有用性を評価し、確認した。
論文 参考訳(メタデータ) (2020-06-16T19:59:28Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。