論文の概要: Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning
- arxiv url: http://arxiv.org/abs/2407.16907v1
- Date: Tue, 25 Jun 2024 01:19:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-28 18:19:29.685526
- Title: Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning
- Title(参考訳): 機械学習に基づく学生の学業成績分析のための教育ビッグデータに関する研究
- Authors: Chun Wang, Jiexiao Chen, Ziyang Xie, Jianke Zou,
- Abstract要約: 本研究では,Long Short-Term Memory Network(LSTM)に基づく機械学習モデルを用いて,教育用ビッグデータの詳細な分析を行った。
LSTMモデルは時系列データを効率的に処理し、学生の学習活動における時間依存的・長期的傾向を捉えることができる。
このアプローチは、生徒の進歩、エンゲージメント、その他の行動パターンを分析してパーソナライズされた教育を支援するのに特に有用である。
- 参考スコア(独自算出の注目度): 8.556825982336807
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The application of the Internet in the field of education is becoming more and more popular, and a large amount of educational data is generated in the process. How to effectively use these data has always been a key issue in the field of educational data mining. In this work, a machine learning model based on Long Short-Term Memory Network (LSTM) was used to conduct an in-depth analysis of educational big data to evaluate student performance. The LSTM model efficiently processes time series data, allowing us to capture time-dependent and long-term trends in students' learning activities. This approach is particularly useful for analyzing student progress, engagement, and other behavioral patterns to support personalized education. In an experimental analysis, we verified the effectiveness of the deep learning method in predicting student performance by comparing the performance of different models. Strict cross-validation techniques are used to ensure the accuracy and generalization of experimental results.
- Abstract(参考訳): 教育分野におけるインターネットの利用はますます普及し、その過程で大量の教育データが生成されるようになっている。
これらのデータを効果的に活用する方法は、教育データマイニングの分野で常に重要な問題となっている。
本研究では,Long Short-Term Memory Network(LSTM)に基づく機械学習モデルを用いて,教育用ビッグデータの詳細な分析を行い,学生のパフォーマンスを評価する。
LSTMモデルは時系列データを効率的に処理し、学生の学習活動における時間依存的・長期的傾向を捉えることができる。
このアプローチは、生徒の進歩、エンゲージメント、その他の行動パターンを分析してパーソナライズされた教育を支援するのに特に有用である。
実験により,異なるモデルの性能を比較することで,学生の成績を予測するためのディープラーニング手法の有効性を検証した。
厳密なクロスバリデーション技術は、実験結果の精度と一般化を保証するために用いられる。
関連論文リスト
- A Deep Learning Approach Towards Student Performance Prediction in
Online Courses: Challenges Based on a Global Perspective [0.6058427379240696]
本研究は,オンラインコースの中間段階における学生のパフォーマンスを予測するために,深層学習技術(CNNとRNN-LSTM)を用いることを提案する。
実験結果から、ディープラーニングモデルは、他の最適化されたMLモデルよりも優れた性能を持つことが示された。
論文 参考訳(メタデータ) (2024-01-10T19:13:19Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Multi-granulariy Time-based Transformer for Knowledge Tracing [9.788039182463768]
過去のテストスコアを含む学生の過去のデータを活用して、各学生にパーソナライズされたモデルを作成します。
次に、これらのモデルを使用して、将来のパフォーマンスを所定のテストで予測します。
論文 参考訳(メタデータ) (2023-04-11T14:46:38Z) - Exploring the Impact of Instruction Data Scaling on Large Language
Models: An Empirical Study on Real-World Use Cases [17.431381376675432]
本稿では,命令データのスケールの異なる命令データに対して,命令チューニングに基づく大規模言語モデルの性能について検討する。
ベースモデルとしてBloomz-7B1-mtを用いると、命令データの量を増やすだけで、オープン・エンド・ジェネレーションのようなタスクが継続的に改善されることが示される。
本稿では,高品質なトレーニングデータ,スケールベースモデル,ハードタスクに特化したトレーニング手法を効果的に選択する,といった将来的な研究方向を提案する。
論文 参考訳(メタデータ) (2023-03-26T14:49:37Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - Process-BERT: A Framework for Representation Learning on Educational
Process Data [68.8204255655161]
本稿では,教育プロセスデータの表現を学習するためのフレームワークを提案する。
我々のフレームワークは、BERT型の目的を用いて、シーケンシャルなプロセスデータから表現を学習する事前学習ステップで構成されています。
当社のフレームワークは,2019年国のレポートカードデータマイニングコンペティションデータセットに適用しています。
論文 参考訳(メタデータ) (2022-04-28T16:07:28Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
オンライン」連続学習は、情報保持とオンライン学習の有効性の両方を評価することができる。
オンライン連続学習では、入力される各小さなデータをまずテストに使用し、次にトレーニングセットに追加し、真にオンラインにします。
本稿では,大規模かつ自然な分布変化を示すオンライン連続視覚学習のための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-08-20T06:17:20Z) - Do we need to go Deep? Knowledge Tracing with Big Data [5.218882272051637]
教育分野で公開されている最大の学生インタラクションデータセットであるEdNetを使用して、深層モデルと従来のモデルの両方が将来の学生のパフォーマンスを正確に予測する方法を理解しています。
我々の研究は、慎重に設計された特徴を持つロジスティック回帰モデルが広範な実験から深いモデルよりも優れていることを観察する。
論文 参考訳(メタデータ) (2021-01-20T22:40:38Z) - Computational Models for Academic Performance Estimation [21.31653695065347]
本稿では,ディープラーニングと機械学習のアプローチを深く分析し,自動学生のパフォーマンス推定システムの構築について述べる。
主なコントリビューションは、(a)15のコースからなる大規模なデータセット(学術研究のために公開されている)、(b)このデータセットの推定問題に関する統計的分析と改善である。
機能エンジニアリングや論理関数の推論に依存する従来のアプローチとは異なり、我々のアプローチは完全にデータ駆動であり、様々な予測タスクでパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-09-06T07:31:37Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。