論文の概要: Computational Models for Academic Performance Estimation
- arxiv url: http://arxiv.org/abs/2009.02661v1
- Date: Sun, 6 Sep 2020 07:31:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 08:12:29.554368
- Title: Computational Models for Academic Performance Estimation
- Title(参考訳): アカデミックパフォーマンス推定のための計算モデル
- Authors: Vipul Bansal, Himanshu Buckchash, Balasubramanian Raman
- Abstract要約: 本稿では,ディープラーニングと機械学習のアプローチを深く分析し,自動学生のパフォーマンス推定システムの構築について述べる。
主なコントリビューションは、(a)15のコースからなる大規模なデータセット(学術研究のために公開されている)、(b)このデータセットの推定問題に関する統計的分析と改善である。
機能エンジニアリングや論理関数の推論に依存する従来のアプローチとは異なり、我々のアプローチは完全にデータ駆動であり、様々な予測タスクでパフォーマンスが向上する。
- 参考スコア(独自算出の注目度): 21.31653695065347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluation of students' performance for the completion of courses has been a
major problem for both students and faculties during the work-from-home period
in this COVID pandemic situation. To this end, this paper presents an in-depth
analysis of deep learning and machine learning approaches for the formulation
of an automated students' performance estimation system that works on partially
available students' academic records. Our main contributions are (a) a large
dataset with fifteen courses (shared publicly for academic research) (b)
statistical analysis and ablations on the estimation problem for this dataset
(c) predictive analysis through deep learning approaches and comparison with
other arts and machine learning algorithms. Unlike previous approaches that
rely on feature engineering or logical function deduction, our approach is
fully data-driven and thus highly generic with better performance across
different prediction tasks.
- Abstract(参考訳): 新型コロナウイルスのパンデミックによる在宅勤務における学生と学部の成績評価は,学生と学部の双方にとって大きな問題となっている。
そこで本研究では,学生の学習記録を部分的に活用する自動成績推定システムの構築に向けて,ディープラーニングと機械学習のアプローチを詳細に分析する。
私たちの主な貢献は
(a)15のコースからなる大規模データセット(学術研究用公開共有)
b)このデータセットの推定問題に関する統計解析とアブレーション
(c)深層学習アプローチによる予測分析と,他の技術や機械学習アルゴリズムとの比較。
機能エンジニアリングや論理関数の推論に依存する従来のアプローチとは異なり、我々のアプローチは完全にデータ駆動であり、様々な予測タスクでパフォーマンスが向上する。
関連論文リスト
- Research on Education Big Data for Students Academic Performance Analysis based on Machine Learning [8.556825982336807]
本研究では,Long Short-Term Memory Network(LSTM)に基づく機械学習モデルを用いて,教育用ビッグデータの詳細な分析を行った。
LSTMモデルは時系列データを効率的に処理し、学生の学習活動における時間依存的・長期的傾向を捉えることができる。
このアプローチは、生徒の進歩、エンゲージメント、その他の行動パターンを分析してパーソナライズされた教育を支援するのに特に有用である。
論文 参考訳(メタデータ) (2024-06-25T01:19:22Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Manipulating Predictions over Discrete Inputs in Machine Teaching [43.914943603238996]
本稿では,個別領域における機械教育,特に教師の目標に基づいて学生モデルの予測を効率的に学習データを変更することに焦点を当てた。
本稿では,この課題を最適化問題として定式化し,反復探索アルゴリズムを提案する。
本アルゴリズムは,教師が生徒のモデルを改善するために誤予測を修正しようとする場合や,特定のサンプルを対象のクラスに不正に分類するために悪質な操作を行う場合において,有意義な数値的メリットを示す。
論文 参考訳(メタデータ) (2024-01-31T14:23:51Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Analyzing the Capabilities of Nature-inspired Feature Selection
Algorithms in Predicting Student Performance [0.0]
本稿では,学生のパフォーマンス予測に使用するアンサンブルアルゴリズムの特徴選択部分において,自然に触発されたアルゴリズムの相対的性能について分析を行った。
その結果,自然に着想を得たアルゴリズムを特徴選択に利用し,従来のMLアルゴリズムを分類に利用することで,予測精度が向上し,特徴セットのサイズを最大65%削減できることがわかった。
論文 参考訳(メタデータ) (2023-08-15T21:18:52Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
教師付き事前学習データセットのクラス内多様性(クラス毎のサンプル数)とクラス間多様性(クラス数)とのトレードオフの影響について検討した。
トレーニング前のデータセットのサイズが固定された場合、最高のダウンストリームのパフォーマンスは、クラス内/クラス間の多様性のバランスがとれる。
論文 参考訳(メタデータ) (2023-05-20T16:23:50Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - Multi-split Optimized Bagging Ensemble Model Selection for Multi-class
Educational Data Mining [8.26773636337474]
この研究は、2つの異なる大学における2つの異なる学部のデータセットを分析します。
コース配信の2段階(それぞれ20%と50%)の成績を予測することを目的としている。
論文 参考訳(メタデータ) (2020-06-09T03:22:33Z) - Systematic Ensemble Model Selection Approach for Educational Data Mining [8.26773636337474]
この研究は、コースデリバリの2つの別々の段階において、2つの異なるデータセットを調査し、分析する。
Giniインデックスとp値に基づく体系的なアプローチを提案し、6つの潜在的機械学習アルゴリズムの組み合わせから適切なアンサンブル学習者を選択する。
実験結果から,提案したアンサンブルモデルでは,両データセットのすべての段階で高い精度と低い偽陽性率が得られることがわかった。
論文 参考訳(メタデータ) (2020-05-13T22:25:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。