TelescopeML -- I. An End-to-End Python Package for Interpreting Telescope Datasets through Training Machine Learning Models, Generating Statistical Reports, and Visualizing Results
- URL: http://arxiv.org/abs/2407.16917v1
- Date: Wed, 24 Jul 2024 00:44:52 GMT
- Title: TelescopeML -- I. An End-to-End Python Package for Interpreting Telescope Datasets through Training Machine Learning Models, Generating Statistical Reports, and Visualizing Results
- Authors: Ehsan, Gharib-Nezhad, Natasha E. Batalha, Hamed Valizadegan, Miguel J. S. Martinho, Mahdi Habibi, Gopal Nookula,
- Abstract summary: textttTelescopeML is a Python package developed to perform three main tasks.
Process the synthetic astronomical datasets for training a CNN model and prepare the observational dataset for later use for prediction.
- Score: 1.3372051498158442
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We are on the verge of a revolutionary era in space exploration, thanks to advancements in telescopes such as the James Webb Space Telescope (\textit{JWST}). High-resolution, high signal-to-noise spectra from exoplanet and brown dwarf atmospheres have been collected over the past few decades, requiring the development of accurate and reliable pipelines and tools for their analysis. Accurately and swiftly determining the spectroscopic parameters from the observational spectra of these objects is crucial for understanding their atmospheric composition and guiding future follow-up observations. \texttt{TelescopeML} is a Python package developed to perform three main tasks: 1. Process the synthetic astronomical datasets for training a CNN model and prepare the observational dataset for later use for prediction; 2. Train a CNN model by implementing the optimal hyperparameters; and 3. Deploy the trained CNN models on the actual observational data to derive the output spectroscopic parameters.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Computing Transiting Exoplanet Parameters with 1D Convolutional Neural
Networks [0.0]
Two 1D convolutional neural network models are presented.
One model operates on complete light curves and estimates the orbital period.
The other one operates on phase-folded light curves and estimates the semimajor axis of the orbit and the square of the planet-to-star radius ratio.
arXiv Detail & Related papers (2024-02-21T10:17:23Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
We train an ANPE model for the APOGEE survey and demonstrate its efficacy on both mock and real stellar spectra.
We introduce an effective approach to handling the measurement noise properties inherent in spectral data.
We discuss the utility of an ANPE "model zoo," where models are trained for specific instruments and distributed under the nbi framework.
arXiv Detail & Related papers (2023-12-09T21:30:07Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Exoplanet Detection by Machine Learning with Data Augmentation [0.0]
Deep learning has potential to automate parts of the exoplanet detection pipeline.
Smallness of available datasets makes it difficult to realize the level of performance one expects from powerful network architectures.
We demonstrate that data augmentation has a potential to improve model performance for the exoplanet detection problem.
arXiv Detail & Related papers (2022-11-28T17:35:16Z) - Convolutional neural networks as an alternative to Bayesian retrievals [0.0]
We compare machine learning retrievals of exoplanet transmission spectra with nested sampling.
We also test how robust machine learning and nested sampling are against incorrect assumptions in our models.
arXiv Detail & Related papers (2022-03-02T16:58:37Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - First Full-Event Reconstruction from Imaging Atmospheric Cherenkov
Telescope Real Data with Deep Learning [55.41644538483948]
The Cherenkov Telescope Array is the future of ground-based gamma-ray astronomy.
Its first prototype telescope built on-site, the Large Size Telescope 1, is currently under commissioning and taking its first scientific data.
We present for the first time the development of a full-event reconstruction based on deep convolutional neural networks and its application to real data.
arXiv Detail & Related papers (2021-05-31T12:51:42Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.