Exoplanet Detection by Machine Learning with Data Augmentation
- URL: http://arxiv.org/abs/2211.15577v1
- Date: Mon, 28 Nov 2022 17:35:16 GMT
- Title: Exoplanet Detection by Machine Learning with Data Augmentation
- Authors: Koray Aydo\u{g}an
- Abstract summary: Deep learning has potential to automate parts of the exoplanet detection pipeline.
Smallness of available datasets makes it difficult to realize the level of performance one expects from powerful network architectures.
We demonstrate that data augmentation has a potential to improve model performance for the exoplanet detection problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has recently been demonstrated that deep learning has significant
potential to automate parts of the exoplanet detection pipeline using light
curve data from satellites such as Kepler \cite{borucki2010kepler}
\cite{koch2010kepler} and NASA's Transiting Exoplanet Survey Satellite (TESS)
\cite{ricker2010transiting}. Unfortunately, the smallness of the available
datasets makes it difficult to realize the level of performance one expects
from powerful network architectures.
In this paper, we investigate the use of data augmentation techniques on
light curve data from to train neural networks to identify exoplanets. The
augmentation techniques used are of two classes: Simple (e.g. additive noise
augmentation) and learning-based (e.g. first training a GAN
\cite{goodfellow2020generative} to generate new examples). We demonstrate that
data augmentation has a potential to improve model performance for the
exoplanet detection problem, and recommend the use of augmentation based on
generative models as more data becomes available.
Related papers
- Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
We introduce an Expansive Synthesis model generating large-scale, information-rich datasets from minimal samples.
An autoencoder with self-attention layers and optimal transport refines distributional consistency.
Results show comparable performance, demonstrating the model's potential to augment training data effectively.
arXiv Detail & Related papers (2024-06-25T02:59:02Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
arXiv Detail & Related papers (2024-06-18T21:09:56Z) - Data Augmentations in Deep Weight Spaces [89.45272760013928]
We introduce a novel augmentation scheme based on the Mixup method.
We evaluate the performance of these techniques on existing benchmarks as well as new benchmarks we generate.
arXiv Detail & Related papers (2023-11-15T10:43:13Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Model is a scalable data engine for object detection.
DiffusionEngine (DE) provides high-quality detection-oriented training pairs in a single stage.
arXiv Detail & Related papers (2023-09-07T17:55:01Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
We classify transient noise signals (i.e.glitches) and gravitational waves in data from the Advanced LIGO detectors.
We use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset.
We also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels.
arXiv Detail & Related papers (2023-03-24T11:12:37Z) - ExoSGAN and ExoACGAN: Exoplanet Detection using Adversarial Training
Algorithms [0.0]
We use two variations of generative adversarial networks to detect transiting exoplanets in K2 data.
Our techniques are able to categorize the light curves with a recall and precision of 1.00 on the test data.
arXiv Detail & Related papers (2022-07-20T05:45:36Z) - Improving Astronomical Time-series Classification via Data Augmentation
with Generative Adversarial Networks [1.2891210250935146]
We propose a data augmentation methodology based on Generative Adrial Networks (GANs) to generate a variety of synthetic light curves from variable stars.
The classification accuracy of variable stars is improved significantly when training with synthetic data and testing with real data.
arXiv Detail & Related papers (2022-05-13T16:39:54Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
We introduce the local augmentation, which enhances node features by its local subgraph structures.
Based on the local augmentation, we further design a novel framework: LA-GNN, which can apply to any GNN models in a plug-and-play manner.
arXiv Detail & Related papers (2021-09-08T18:10:08Z) - DeepSatData: Building large scale datasets of satellite images for
training machine learning models [77.17638664503215]
This report presents design considerations for automatically generating satellite imagery datasets for training machine learning models.
We discuss issues faced from the point of view of deep neural network training and evaluation.
arXiv Detail & Related papers (2021-04-28T15:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.