論文の概要: Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning
- arxiv url: http://arxiv.org/abs/2407.16920v1
- Date: Wed, 24 Jul 2024 01:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:12:43.208622
- Title: Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning
- Title(参考訳): Train-Attention: メタラーニング: 継続的な知識学習に焦点を当てる場所
- Authors: Yeongbin Seo, Dongha Lee, Jinyoung Yeo,
- Abstract要約: TAALM(Train-Attention-Augmented Language Model)は,トークンに対する重み付けを動的に予測・適用することにより,学習効率を向上させる。
我々は,TAALMがベースライン上での最先端性能を証明し,従来のCKLアプローチと統合した場合に相乗的互換性を示すことを示す。
- 参考スコア(独自算出の注目度): 15.475427498268393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous studies on continual knowledge learning (CKL) in large language models (LLMs) have predominantly focused on approaches such as regularization, architectural modifications, and rehearsal techniques to mitigate catastrophic forgetting. However, these methods naively inherit the inefficiencies of standard training procedures, indiscriminately applying uniform weight across all tokens, which can lead to unnecessary parameter updates and increased forgetting. To address these shortcomings, we propose a novel CKL approach termed Train-Attention-Augmented Language Model (TAALM), which enhances learning efficiency by dynamically predicting and applying weights to tokens based on their usefulness. This method employs a meta-learning framework that optimizes token importance predictions, facilitating targeted knowledge updates and minimizing forgetting. Also, we observe that existing benchmarks do not clearly exhibit the trade-off between learning and retaining, therefore we propose a new benchmark, \textsc{LAMA-ckl}, to address this issue. Through experiments conducted on both newly introduced and established CKL benchmarks, TAALM proves the state-of-the-art performance upon the baselines, and also shows synergistic compatibility when integrated with previous CKL approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)における継続的知識学習(CKL)に関するこれまでの研究は、正則化やアーキテクチャ修正、破滅的な忘れを和らげるためのリハーサル技術といったアプローチに主に焦点を当ててきた。
しかし、これらの手法は標準的な訓練手順の非効率性を自然に継承し、全てのトークンに均一な重み付けを無差別に適用することで、不要なパラメータ更新や忘れの増大につながる可能性がある。
これらの欠点に対処するため,本論文では,トークンに対する重み付けを動的に予測・適用することにより学習効率を向上させる,Train-Attention-Augmented Language Model (TAALM) と呼ばれる新しいCKLアプローチを提案する。
この方法は、トークンの重要度予測を最適化し、目標とする知識更新を容易にし、忘れを最小化するメタラーニングフレームワークを使用する。
また,既存のベンチマークは学習と保持のトレードオフを明確に示していないため,この問題に対処するための新しいベンチマークである「textsc{LAMA-ckl}」を提案する。
新たに導入されたCKLベンチマークと確立されたCKLベンチマークの両方で実施された実験を通じて、TAALMはベースライン上での最先端のパフォーマンスを証明し、以前のCKLアプローチと統合した場合に相乗的互換性を示す。
関連論文リスト
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormerは構造ベースの連続トランスフォーマーモデルであり、メタポリシックネットワークを介して、以前のポリシーを適応的に構成する。
実験の結果,CompoFormerは従来の継続学習法(CL)よりも優れており,特にタスクシーケンスが長いことが判明した。
論文 参考訳(メタデータ) (2024-11-18T08:20:21Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Learning to Learn without Forgetting using Attention [5.6739565497512405]
継続学習(きゅうがく、Continuous Learning, CL)とは、学習経験を維持しつつ、新たな知識を付加することで、時間とともに継続的に学習する能力である。
現在の機械学習手法は、以前に学んだパターンを上書きし、過去の経験を忘れやすい。
手作りの効果的な更新機構は難しいため,変圧器をベースとしたメタラーニングによるCLの強化を提案する。
論文 参考訳(メタデータ) (2024-08-06T14:25:23Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
そこで本研究では,事前訓練した重みを効率よく微調整する直交微調整法を導入し,頑健さと一般化の強化を実現した。
自己正規化戦略は、OrthSRと呼ばれるVLMのゼロショット一般化の観点から安定性を維持するためにさらに活用される。
筆者らはCLIPとCoOpを再検討し,少数の画像のクラスフィシエーションシナリオにおけるモデルの改善を効果的に行う。
論文 参考訳(メタデータ) (2024-07-11T10:35:53Z) - Information Guided Regularization for Fine-tuning Language Models [11.831883526217942]
我々は、よりスムーズな転写学習のために、より外科的な正規化アプローチが存在する必要があると論じる。
モデル正規化の改善と下流一般化のための新しい手法を考案する。
論文 参考訳(メタデータ) (2024-06-20T05:18:37Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
継続学習(CL)は、以前取得した知識を維持しながら、動的かつ変化するデータ分布から学ぶことに焦点を当てている。
正規化ベース、ベイズベース、メモリ再生ベースなど、破滅的な忘れ込みの課題に対処する様々な手法が開発されている。
本研究の目的は,既存の方法論を包含し,整理する包括的かつ包括的な枠組みを導入することで,このギャップを埋めることである。
論文 参考訳(メタデータ) (2024-03-20T02:21:44Z) - Knowledge Editing for Large Language Models: A Survey [51.01368551235289]
大規模言語モデル(LLM)の大きな欠点の1つは、事前学習に要する計算コストである。
知識に基づくモデル編集(KME)が注目を集めており、特定の知識を組み込むためにLLMを正確に修正することを目的としている。
論文 参考訳(メタデータ) (2023-10-24T22:18:13Z) - Continual Learners are Incremental Model Generalizers [70.34479702177988]
本稿では,継続学習モデル(CL)が事前学習者に与える影響を幅広く研究する。
その結果, 微調整性能が著しく低下することなく, 表現の伝達品質が徐々に向上することがわかった。
本稿では,下流タスクの解法において,リッチなタスクジェネリック表現を保存できる新しい微調整方式GLobal Attention Discretization(GLAD)を提案する。
論文 参考訳(メタデータ) (2023-06-21T05:26:28Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
オンライン連続学習(OCL)は、非定常データストリームからモデル学習を可能とし、新たな知識を継続的に獲得し、学習した知識を維持することを目的としている。
主な課題は、"破滅的な忘れる"問題、すなわち、新しい知識を学習しながら学習した知識を十分に記憶できないことにある。
論文 参考訳(メタデータ) (2022-11-10T05:29:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。