論文の概要: From Sands to Mansions: Simulating Full Attack Chain with LLM-Organized Knowledge
- arxiv url: http://arxiv.org/abs/2407.16928v2
- Date: Tue, 31 Dec 2024 16:29:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-03 14:32:56.616074
- Title: From Sands to Mansions: Simulating Full Attack Chain with LLM-Organized Knowledge
- Title(参考訳): 砂からマンション: LLM-Organized Knowledgeによるフルアタックチェーンのシミュレーション
- Authors: Lingzhi Wang, Zhenyuan Li, Zonghan Guo, Yi Jiang, Kyle Jung, Kedar Thiagarajan, Jiahui Wang, Zhengkai Wang, Emily Wei, Xiangmin Shen, Yan Chen,
- Abstract要約: マルチステージ攻撃シミュレーションはシステム評価効率を高めるための有望なアプローチを提供する。
完全なアタックチェーンをシミュレートするのは複雑で、セキュリティ専門家からはかなりの時間と専門知識が必要です。
我々は、外部攻撃ツールと脅威情報レポートに基づいて、完全な攻撃チェーンを自律的にシミュレートするシステムであるAuroraを紹介する。
- 参考スコア(独自算出の注目度): 10.065241604400223
- License:
- Abstract: Adversarial dynamics are intrinsic to the nature of offense and defense in cyberspace, with both attackers and defenders continuously evolving their technologies. Given the wide array of security products available, users often face challenges in selecting the most effective solutions. Furthermore, traditional benchmarks based on single-point attacks are increasingly inadequate, failing to accurately reflect the full range of attacker capabilities and falling short in properly evaluating the effectiveness of defense products. Automated multi-stage attack simulations offer a promising approach to enhance system evaluation efficiency and aid in analyzing the effectiveness of detection systems. However, simulating a full attack chain is complex and requires significant time and expertise from security professionals, facing several challenges, including limited coverage of attack techniques, a high level of required expertise, and a lack of execution detail. In this paper, we model automatic attack simulation as a planning problem. By using the Planning Domain Definition Language (PDDL) to formally describe the attack simulation problem, and combining domain knowledge of both the problem and the domain space, we enable the planning of attack paths through standardized, domain-independent planning algorithms. We explore the potential of Large Language Models (LLMs) to summarize and analyze knowledge from existing attack documentation and reports, facilitating automated attack planning. We introduce Aurora, a system that autonomously simulates full attack chains based on external attack tools and threat intelligence reports.
- Abstract(参考訳): 敵のダイナミクスはサイバー空間における攻撃と防御の性質に固有のものであり、攻撃者も防衛者もその技術を継続的に進化させている。
利用可能な幅広いセキュリティ製品を考えると、ユーザは最も効果的なソリューションを選択する際の課題に直面することが多い。
さらに、シングルポイント攻撃に基づく従来のベンチマークはますます不十分になり、攻撃能力の全範囲を正確に反映できず、防御製品の有効性を適切に評価するに足りなくなっている。
自動多段階攻撃シミュレーションは、システム評価効率を高め、検出システムの有効性を解析する助けとなる、有望なアプローチを提供する。
しかし、完全なアタックチェーンをシミュレートするのは複雑で、セキュリティ専門家からはかなりの時間と専門知識を必要とする。
本稿では,自動攻撃シミュレーションを計画問題としてモデル化する。
計画領域定義言語(PDDL)を用いて、攻撃シミュレーション問題を正式に記述し、問題とドメイン空間の両方のドメイン知識を組み合わせることにより、標準化されたドメインに依存しない計画アルゴリズムによる攻撃経路の計画を可能にする。
我々はLLM(Large Language Models)の可能性を探り、既存の攻撃文書やレポートから知識を要約し分析し、自動攻撃計画を容易にする。
我々は、外部攻撃ツールと脅威情報レポートに基づいて、完全な攻撃チェーンを自律的にシミュレートするシステムであるAuroraを紹介する。
関連論文リスト
- Towards in-situ Psychological Profiling of Cybercriminals Using Dynamically Generated Deception Environments [0.0]
サイバー犯罪は年間10兆ドル近くを世界経済に費やしていると見積もられている。
サイバー犯罪の脅威と戦うには、サイバー防衛に対する従来の周辺セキュリティアプローチが不十分であることが証明されている。
詐欺的手法は、攻撃者を誤解させ、重要な資産から切り離し、同時に脅威俳優にサイバー脅威情報を収集することを目的としている。
本稿では,サイバー攻撃のシミュレーション中に,攻撃者の身元をリアルタイムで把握するために開発された概念実証システムについて述べる。
論文 参考訳(メタデータ) (2024-05-19T09:48:59Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - Use of Graph Neural Networks in Aiding Defensive Cyber Operations [2.1874189959020427]
グラフニューラルネットワークは、防御対策の有効性を高めるための有望なアプローチとして登場した。
我々は、最も有名な攻撃ライフサイクルの1つ、ロッキード・マーティン・サイバーキル・チェーンのそれぞれのステージを壊すのに役立つGNNの応用について検討する。
論文 参考訳(メタデータ) (2024-01-11T05:56:29Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
サイバーレジリエンスは、不適切な保護とレジリエンスメカニズムを補完する新しいセキュリティパラダイムを提供する。
CRM(Cyber-Resilient Mechanism)は、既知の、あるいはゼロデイの脅威や、リアルタイムでの不確実性に適応するメカニズムである。
サイバーレジリエンスに関するRLに関する文献をレビューし、3つの主要な脆弱性に対するサイバーレジリエンスの防御について論じる。
論文 参考訳(メタデータ) (2021-07-02T01:08:45Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。