論文の概要: From Sands to Mansions: Towards Automated Cyberattack Emulation with Classical Planning and Large Language Models
- arxiv url: http://arxiv.org/abs/2407.16928v3
- Date: Thu, 17 Apr 2025 14:54:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-19 05:01:05.549746
- Title: From Sands to Mansions: Towards Automated Cyberattack Emulation with Classical Planning and Large Language Models
- Title(参考訳): 砂からマンション:古典的計画と大規模言語モデルによる自動サイバー攻撃エミュレーションを目指して
- Authors: Lingzhi Wang, Zhenyuan Li, Yi Jiang, Zhengkai Wang, Zonghan Guo, Jiahui Wang, Yangyang Wei, Xiangmin Shen, Wei Ruan, Yan Chen,
- Abstract要約: 脅威情報による防衛をサポートするために、包括的で最新のサイバー攻撃データセットが必要である。
我々はAuroraを提案する。Auroraは、サードパーティの攻撃ツールと脅威情報レポートを使って、自律的にサイバー攻撃をエミュレートするシステムである。
Auroraを使って1000以上のアタックチェーンを含むデータセットを作成します。
- 参考スコア(独自算出の注目度): 10.557417449327868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As attackers continually advance their tools, skills, and techniques during cyberattacks - particularly in modern Advanced Persistence Threats (APT) campaigns - there is a pressing need for a comprehensive and up-to-date cyberattack dataset to support threat-informed defense and enable benchmarking of defense systems in both academia and commercial solutions. However, there is a noticeable scarcity of cyberattack datasets: recent academic studies continue to rely on outdated benchmarks, while cyberattack emulation in industry remains limited due to the significant human effort and expertise required. Creating datasets by emulating advanced cyberattacks presents several challenges, such as limited coverage of attack techniques, the complexity of chaining multiple attack steps, and the difficulty of realistically mimicking actual threat groups. In this paper, we introduce modularized Attack Action and Attack Action Linking Model as a structured way to organizing and chaining individual attack steps into multi-step cyberattacks. Building on this, we propose Aurora, a system that autonomously emulates cyberattacks using third-party attack tools and threat intelligence reports with the help of classical planning and large language models. Aurora can automatically generate detailed attack plans, set up emulation environments, and semi-automatically execute the attacks. We utilize Aurora to create a dataset containing over 1,000 attack chains. To our best knowledge, Aurora is the only system capable of automatically constructing such a large-scale cyberattack dataset with corresponding attack execution scripts and environments. Our evaluation further demonstrates that Aurora outperforms the previous similar work and even the most advanced generative AI models in cyberattack emulation. To support further research, we published the cyberattack dataset and will publish the source code of Aurora.
- Abstract(参考訳): サイバー攻撃の間、攻撃者はツール、スキル、テクニックを継続的に前進させ、特に現代のAdvanced Persistence Threats(APT)キャンペーンでは、脅威に富んだ防衛をサポートし、アカデミックと商用の両方のソリューションにおける防衛システムのベンチマークを可能にする、包括的で最新のサイバー攻撃データセットの必要性が迫られている。
しかし、サイバー攻撃データセットは顕著に乏しく、最近の学術研究は時代遅れのベンチマークに頼り続けている。
高度なサイバーアタックをエミュレートしてデータセットを作成することは、攻撃テクニックの限られた範囲、複数のアタックステップのチェーンの複雑さ、実際の脅威グループを現実的に模倣することの難しさなど、いくつかの課題を示す。
本稿では,多段階のサイバーアタックに個別のアタックステップを編成・連鎖する構造的手法として,モジュール化されたアタックアクションとアタックアクションリンクモデルを提案する。
そこで我々は,サードパーティの攻撃ツールを用いたサイバー攻撃を自律的にエミュレートするシステムであるAuroraを提案する。
Auroraは、詳細な攻撃計画を自動的に生成し、エミュレーション環境を設定し、半自動で攻撃を実行する。
Auroraを使って1000以上のアタックチェーンを含むデータセットを作成します。
我々の知る限り、Auroraは大規模なサイバー攻撃データセットを対応する攻撃実行スクリプトと環境で自動構築できる唯一のシステムである。
我々の評価は、Auroraがサイバーアタックエミュレーションにおいて、これまでの類似した研究や、最も先進的な生成AIモデルよりも優れていることを示している。
さらなる研究を支援するため、サイバー攻撃データセットを公開し、Auroraのソースコードを公開する。
関連論文リスト
- A Framework for Evaluating Emerging Cyberattack Capabilities of AI [11.595840449117052]
本研究は,(1)エンド・ツー・エンド・エンド・アタック・チェーンの検証,(2)AI脅威評価のギャップの同定,(3)目標とする緩和の優先順位付けを支援する,という制約に対処する新たな評価フレームワークを導入する。
我々は、GoogleのThreat Intelligence Groupがカタログ化したサイバーインシデントにAIが関与した12,000件以上の実世界の事例を分析し、7つの代表的なアタックチェーンのアーキタイプをキュレートした。
我々は、特定の攻撃段階にわたって攻撃能力を増幅するAIの可能性について報告し、防御の優先順位付けを推奨する。
論文 参考訳(メタデータ) (2025-03-14T23:05:02Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
スマートグリッドへの移行により、高度なサイバー脅威に対する電力システムの脆弱性が増大した。
本稿では,モジュール型サイバーアタックの実行に自律エージェントを用いたシミュレーションフレームワークを提案する。
当社のアプローチは、データ生成のための柔軟で汎用的なソースを提供し、より高速なプロトタイピングと開発リソースと時間の削減を支援します。
論文 参考訳(メタデータ) (2024-12-05T08:56:38Z) - SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
我々は、複合AIシステムに適用可能な、異なるソフトウェアとハードウェアの攻撃について議論する。
複数の攻撃機構を組み合わせることで、孤立攻撃に必要な脅威モデル仮定をいかに削減できるかを示す。
論文 参考訳(メタデータ) (2024-11-20T17:08:38Z) - Towards in-situ Psychological Profiling of Cybercriminals Using Dynamically Generated Deception Environments [0.0]
サイバー犯罪は年間10兆ドル近くを世界経済に費やしていると見積もられている。
サイバー犯罪の脅威と戦うには、サイバー防衛に対する従来の周辺セキュリティアプローチが不十分であることが証明されている。
詐欺的手法は、攻撃者を誤解させ、重要な資産から切り離し、同時に脅威俳優にサイバー脅威情報を収集することを目的としている。
本稿では,サイバー攻撃のシミュレーション中に,攻撃者の身元をリアルタイムで把握するために開発された概念実証システムについて述べる。
論文 参考訳(メタデータ) (2024-05-19T09:48:59Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - Use of Graph Neural Networks in Aiding Defensive Cyber Operations [2.1874189959020427]
グラフニューラルネットワークは、防御対策の有効性を高めるための有望なアプローチとして登場した。
我々は、最も有名な攻撃ライフサイクルの1つ、ロッキード・マーティン・サイバーキル・チェーンのそれぞれのステージを壊すのに役立つGNNの応用について検討する。
論文 参考訳(メタデータ) (2024-01-11T05:56:29Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
大規模言語モデル (LLM) は、有害なコンテンツを生成するためにLSMを誘導するレッド・チーム・アタックの影響を受けやすい。
本稿では、手動と自動の手法を組み合わせて、高品質な攻撃プロンプトを経済的に生成する統合的アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-19T06:15:05Z) - Looking Beyond IoCs: Automatically Extracting Attack Patterns from
External CTI [3.871148938060281]
LADDERは、大規模にサイバー脅威情報レポートからテキストベースの攻撃パターンを抽出できるフレームワークである。
実世界のシナリオにおけるLADDERの適用を実証するためのユースケースをいくつか提示する。
論文 参考訳(メタデータ) (2022-11-01T12:16:30Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
サイバーレジリエンスは、不適切な保護とレジリエンスメカニズムを補完する新しいセキュリティパラダイムを提供する。
CRM(Cyber-Resilient Mechanism)は、既知の、あるいはゼロデイの脅威や、リアルタイムでの不確実性に適応するメカニズムである。
サイバーレジリエンスに関するRLに関する文献をレビューし、3つの主要な脆弱性に対するサイバーレジリエンスの防御について論じる。
論文 参考訳(メタデータ) (2021-07-02T01:08:45Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。