ScholarChemQA: Unveiling the Power of Language Models in Chemical Research Question Answering
- URL: http://arxiv.org/abs/2407.16931v1
- Date: Wed, 24 Jul 2024 01:46:55 GMT
- Title: ScholarChemQA: Unveiling the Power of Language Models in Chemical Research Question Answering
- Authors: Xiuying Chen, Tairan Wang, Taicheng Guo, Kehan Guo, Juexiao Zhou, Haoyang Li, Mingchen Zhuge, Jürgen Schmidhuber, Xin Gao, Xiangliang Zhang,
- Abstract summary: Question Answering (QA) effectively evaluates language models' reasoning and knowledge depth.
Chemical QA plays a crucial role in both education and research by effectively translating complex chemical information into readily understandable format.
This dataset reflects typical real-world challenges, including an imbalanced data distribution and a substantial amount of unlabeled data that can be potentially useful.
We introduce a QAMatch model, specifically designed to effectively answer chemical questions by fully leveraging our collected data.
- Score: 54.80411755871931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Question Answering (QA) effectively evaluates language models' reasoning and knowledge depth. While QA datasets are plentiful in areas like general domain and biomedicine, academic chemistry is less explored. Chemical QA plays a crucial role in both education and research by effectively translating complex chemical information into readily understandable format. Addressing this gap, we introduce ScholarChemQA, a large-scale QA dataset constructed from chemical papers. This dataset reflects typical real-world challenges, including an imbalanced data distribution and a substantial amount of unlabeled data that can be potentially useful. Correspondingly, we introduce a QAMatch model, specifically designed to effectively answer chemical questions by fully leveraging our collected data. We first address the issue of imbalanced label distribution by re-weighting the instance-wise loss based on the inverse frequency of each class, ensuring minority classes are not dominated by majority ones during optimization. Next, we utilize the unlabeled data to enrich the learning process, generating a variety of augmentations based on a SoftMix operation and ensuring their predictions align with the same target, i.e., pseudo-labels. To ensure the quality of the pseudo-labels, we propose a calibration procedure aimed at closely aligning the pseudo-label estimates of individual samples with a desired ground truth distribution. Experiments show that our QAMatch significantly outperforms the recent similar-scale baselines and Large Language Models (LLMs) not only on our ScholarChemQA dataset but also on four benchmark datasets. We hope our benchmark and model can facilitate and promote more research on chemical QA.
Related papers
- Investigating the Impact of Hard Samples on Accuracy Reveals In-class Data Imbalance [4.291589126905706]
In the AutoML domain, test accuracy is heralded as the quintessential metric for evaluating model efficacy.
However, the reliability of test accuracy as the primary performance metric has been called into question.
The distribution of hard samples between training and test sets affects the difficulty levels of those sets.
We propose a benchmarking procedure for comparing hard sample identification methods.
arXiv Detail & Related papers (2024-09-22T11:38:14Z) - A Large Encoder-Decoder Family of Foundation Models For Chemical Language [1.1073864511426255]
This paper introduces a large encoder-decoder chemical foundation models pre-trained on a curated dataset of 91 million SMILES samples sourced from PubChem.
Our experiments across multiple benchmark datasets validate the capacity of the proposed model in providing state-of-the-art results for different tasks.
arXiv Detail & Related papers (2024-07-24T20:30:39Z) - Analysis of Atom-level pretraining with Quantum Mechanics (QM) data for Graph Neural Networks Molecular property models [0.0]
We show how atom-level pretraining with quantum mechanics (QM) data can mitigate violations of assumptions regarding the distributional similarity between training and test data.
This is the first time that hidden state molecular representations are analyzed to compare the effects of molecule-level and atom-level pretraining on QM data.
arXiv Detail & Related papers (2024-05-23T17:51:05Z) - Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo [0.5110571587151475]
'RetChemQA' is a benchmark dataset designed to evaluate the capabilities of machine learning models in the domain of reticular chemistry.
This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type.
The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group.
arXiv Detail & Related papers (2024-05-03T14:29:54Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
We introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling.
This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space.
The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously.
arXiv Detail & Related papers (2024-04-05T17:15:48Z) - QASnowball: An Iterative Bootstrapping Framework for High-Quality
Question-Answering Data Generation [67.27999343730224]
We introduce an iterative bootstrapping framework for QA data augmentation (named QASnowball)
QASnowball can iteratively generate large-scale high-quality QA data based on a seed set of supervised examples.
We conduct experiments in the high-resource English scenario and the medium-resource Chinese scenario, and the experimental results show that the data generated by QASnowball can facilitate QA models.
arXiv Detail & Related papers (2023-09-19T05:20:36Z) - Federated Learning of Molecular Properties in a Heterogeneous Setting [79.00211946597845]
We introduce federated heterogeneous molecular learning to address these challenges.
Federated learning allows end-users to build a global model collaboratively while preserving the training data distributed over isolated clients.
FedChem should enable a new type of collaboration for improving AI in chemistry that mitigates concerns about valuable chemical data.
arXiv Detail & Related papers (2021-09-15T12:49:13Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
We propose an unsupervised approach to training QA models with generated pseudo-training data.
We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance.
arXiv Detail & Related papers (2020-04-24T17:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.