Provable Benefit of Annealed Langevin Monte Carlo for Non-log-concave Sampling
- URL: http://arxiv.org/abs/2407.16936v1
- Date: Wed, 24 Jul 2024 02:15:48 GMT
- Title: Provable Benefit of Annealed Langevin Monte Carlo for Non-log-concave Sampling
- Authors: Wei Guo, Molei Tao, Yongxin Chen,
- Abstract summary: We establish an oracle complexity of $widetildeOleft(fracdbeta2cal A2varepsilon6right)$ for simple annealed Langevin Monte Carlo algorithm.
We show that $cal A$ represents the action of a curve of probability measures interpolating the target distribution $pi$ and a readily sampleable distribution.
- Score: 28.931489333515618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the outstanding problem of sampling from an unnormalized density that may be non-log-concave and multimodal. To enhance the performance of simple Markov chain Monte Carlo (MCMC) methods, techniques of annealing type have been widely used. However, quantitative theoretical guarantees of these techniques are under-explored. This study takes a first step toward providing a non-asymptotic analysis of annealed MCMC. Specifically, we establish, for the first time, an oracle complexity of $\widetilde{O}\left(\frac{d\beta^2{\cal A}^2}{\varepsilon^6}\right)$ for simple annealed Langevin Monte Carlo algorithm to achieve $\varepsilon^2$ accuracy in Kullback-Leibler divergence to the target distribution $\pi\propto{\rm e}^{-V}$ on $\mathbb{R}^d$ with $\beta$-smooth potential $V$. Here, ${\cal A}$ represents the action of a curve of probability measures interpolating the target distribution $\pi$ and a readily sampleable distribution.
Related papers
- Complexity Analysis of Normalizing Constant Estimation: from Jarzynski Equality to Annealed Importance Sampling and beyond [28.931489333515618]
Given an unnormalized probability density $piproptomathrme-V$, estimating its normalizing constant $Z=int_mathbbRdmathrme-V(x)mathrmdx$ or free energy $F=-log Z$ is a crucial problem in Bayesian statistics, statistical mechanics, and machine learning.
We propose a new normalizing constant estimation algorithm based on reverse diffusion samplers and establish a framework for analyzing its complexity.
arXiv Detail & Related papers (2025-02-07T00:05:28Z) - Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [52.69179872700035]
We propose a novel method for sampling from Gibbs distributions of the form $pi(x)proptoexp(-U(x))$ with a potential $U(x)$.
Inspired by diffusion models we propose to consider a sequence $(pit_k)_k$ of approximations of the target density, for which $pit_kapprox pi$ for $k$ small and, on the other hand, $pit_k$ exhibits favorable properties for sampling for $k$ large.
arXiv Detail & Related papers (2025-02-03T13:50:57Z) - Langevin Quasi-Monte Carlo [6.146093081175471]
Langevin Monte Carlo (LMC) and its gradient versions are powerful algorithms for sampling from complex high-dimensional distributions.
We show that the estimation error of LMC can also be reduced by using quasi-random samples.
arXiv Detail & Related papers (2023-09-22T07:15:18Z) - Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo [104.9535542833054]
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL)
We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo.
Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
arXiv Detail & Related papers (2023-05-29T17:11:28Z) - Settling the Sample Complexity of Model-Based Offline Reinforcement
Learning [50.5790774201146]
offline reinforcement learning (RL) learns using pre-collected data without further exploration.
Prior algorithms or analyses either suffer from suboptimal sample complexities or incur high burn-in cost to reach sample optimality.
We demonstrate that the model-based (or "plug-in") approach achieves minimax-optimal sample complexity without burn-in cost.
arXiv Detail & Related papers (2022-04-11T17:26:19Z) - Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity
Guarantees for Langevin Monte Carlo [24.00911089902082]
This is the sampling iterations for finding an $pi exp(-V)$ on $mathd.
We discuss numerous extensions applications; in particular, it is the first step towards the general theory of non-concave sampling.
arXiv Detail & Related papers (2022-02-10T18:20:55Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence [8.873449722727026]
We show that the rate estimate $widetildemathcalO(depsilon-1)$ improves the previously known rates in both of these metrics.
In particular, for convex and firstorder smooth potentials, we show that LMC algorithm achieves the rate estimate $widetildemathcalO(depsilon-1)$ which improves the previously known rates in both of these metrics.
arXiv Detail & Related papers (2020-07-22T18:18:28Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.