Pose Estimation from Camera Images for Underwater Inspection
- URL: http://arxiv.org/abs/2407.16961v1
- Date: Wed, 24 Jul 2024 03:00:53 GMT
- Title: Pose Estimation from Camera Images for Underwater Inspection
- Authors: Luyuan Peng, Hari Vishnu, Mandar Chitre, Yuen Min Too, Bharath Kalyan, Rajat Mishra, Soo Pieng Tan,
- Abstract summary: Visual localization is a cost-effective alternative to inertial navigation systems.
We show that machine learning-based pose estimation from images shows promise in underwater environments.
We employ novel view synthesis models to generate augmented training data, significantly enhancing pose estimation in unexplored regions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-precision localization is pivotal in underwater reinspection missions. Traditional localization methods like inertial navigation systems, Doppler velocity loggers, and acoustic positioning face significant challenges and are not cost-effective for some applications. Visual localization is a cost-effective alternative in such cases, leveraging the cameras already equipped on inspection vehicles to estimate poses from images of the surrounding scene. Amongst these, machine learning-based pose estimation from images shows promise in underwater environments, performing efficient relocalization using models trained based on previously mapped scenes. We explore the efficacy of learning-based pose estimators in both clear and turbid water inspection missions, assessing the impact of image formats, model architectures and training data diversity. We innovate by employing novel view synthesis models to generate augmented training data, significantly enhancing pose estimation in unexplored regions. Moreover, we enhance localization accuracy by integrating pose estimator outputs with sensor data via an extended Kalman filter, demonstrating improved trajectory smoothness and accuracy.
Related papers
- FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - FisheyeDepth: A Real Scale Self-Supervised Depth Estimation Model for Fisheye Camera [8.502741852406904]
We present FisheyeDepth, a self-supervised depth estimation model tailored for fisheye cameras.
We incorporate a fisheye camera model into the projection and reprojection stages during training to handle image distortions.
We also incorporate real-scale pose information into the geometric projection between consecutive frames, replacing the poses estimated by the conventional pose network.
arXiv Detail & Related papers (2024-09-23T14:31:42Z) - Improved Image-based Pose Regressor Models for Underwater Environments [0.0]
We regress a 6-degree-of-freedom pose from single RGB images with high accuracy.
We explore data augmentation with stereo camera images to improve model accuracy.
Experimental results demonstrate that the models achieve high accuracy in both simulated and clear waters.
arXiv Detail & Related papers (2024-03-13T09:20:43Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - Improving Buoy Detection with Deep Transfer Learning for Mussel Farm
Automation [7.906113472259946]
The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports.
As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques is emerging as an effective approach to enhance operational efficiency.
This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management.
arXiv Detail & Related papers (2023-08-18T01:53:47Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
We propose a novel method to reliably estimate the pose of a camera given a sequence of images acquired in extreme environments such as deep seas or extraterrestrial terrains.
Our method achieves comparable performance with state-of-the-art methods on the indoor benchmark (7-Scenes dataset) using only 20% training data.
arXiv Detail & Related papers (2022-07-13T16:40:02Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
In this work, a general architecture is first formulated probabilistically to extract domain invariant feature through multi-domain image translation.
And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy.
Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMUSeasons dataset.
Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision.
arXiv Detail & Related papers (2020-09-16T14:43:22Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
We propose two perceptual enhancement models, each of which uses a deep enhancement model with a detection perceptor.
Due to the lack of training data, a hybrid underwater image synthesis model, which fuses physical priors and data-driven cues, is proposed to synthesize training data.
Experimental results show the superiority of our proposed method over several state-of-the-art methods on both real-world and synthetic underwater datasets.
arXiv Detail & Related papers (2020-08-21T22:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.