Improved Image-based Pose Regressor Models for Underwater Environments
- URL: http://arxiv.org/abs/2403.08360v1
- Date: Wed, 13 Mar 2024 09:20:43 GMT
- Title: Improved Image-based Pose Regressor Models for Underwater Environments
- Authors: Luyuan Peng, Hari Vishnu, Mandar Chitre, Yuen Min Too, Bharath Kalyan
and Rajat Mishra
- Abstract summary: We regress a 6-degree-of-freedom pose from single RGB images with high accuracy.
We explore data augmentation with stereo camera images to improve model accuracy.
Experimental results demonstrate that the models achieve high accuracy in both simulated and clear waters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the performance of image-based pose regressor models in
underwater environments for relocalization. Leveraging PoseNet and PoseLSTM, we
regress a 6-degree-of-freedom pose from single RGB images with high accuracy.
Additionally, we explore data augmentation with stereo camera images to improve
model accuracy. Experimental results demonstrate that the models achieve high
accuracy in both simulated and clear waters, promising effective real-world
underwater navigation and inspection applications.
Related papers
- FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - Pose Estimation from Camera Images for Underwater Inspection [0.0]
Visual localization is a cost-effective alternative to inertial navigation systems.
We show that machine learning-based pose estimation from images shows promise in underwater environments.
We employ novel view synthesis models to generate augmented training data, significantly enhancing pose estimation in unexplored regions.
arXiv Detail & Related papers (2024-07-24T03:00:53Z) - Separated Attention: An Improved Cycle GAN Based Under Water Image Enhancement Method [0.0]
We have utilized the cycle consistent learning technique of the state-of-the-art Cycle GAN model with modification in the loss function.
We trained the Cycle GAN model with the modified loss functions on the benchmarked Enhancing Underwater Visual Perception dataset.
The upgraded images provide better results from conventional models and further for under water navigation, pose estimation, saliency prediction, object detection and tracking.
arXiv Detail & Related papers (2024-04-11T11:12:06Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
How to obtain clear and visually pleasant images has become a common concern of people.
The task of underwater image enhancement (UIE) has also emerged as the times require.
In this paper, we propose a physical model-guided GAN model for UIE, referred to as PUGAN.
Our PUGAN outperforms state-of-the-art methods in both qualitative and quantitative metrics.
arXiv Detail & Related papers (2023-06-15T07:41:12Z) - Underwater Image Super-Resolution using Generative Adversarial
Network-based Model [3.127436744845925]
Single image super-resolution (SISR) models are able to enhance the resolution and visual quality of underwater images.
In this paper, we fine-tune the pre-trained Real-ESRGAN model for underwater image super-resolution.
arXiv Detail & Related papers (2022-11-07T13:38:28Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - Perceptual underwater image enhancement with deep learning and physical
priors [35.37760003463292]
We propose two perceptual enhancement models, each of which uses a deep enhancement model with a detection perceptor.
Due to the lack of training data, a hybrid underwater image synthesis model, which fuses physical priors and data-driven cues, is proposed to synthesize training data.
Experimental results show the superiority of our proposed method over several state-of-the-art methods on both real-world and synthetic underwater datasets.
arXiv Detail & Related papers (2020-08-21T22:11:34Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.