論文の概要: Case-Enhanced Vision Transformer: Improving Explanations of Image Similarity with a ViT-based Similarity Metric
- arxiv url: http://arxiv.org/abs/2407.16981v1
- Date: Wed, 24 Jul 2024 03:58:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:53:14.754659
- Title: Case-Enhanced Vision Transformer: Improving Explanations of Image Similarity with a ViT-based Similarity Metric
- Title(参考訳): ケースエンハンスド・ビジョン・トランス: ViT を用いた類似度指標による画像類似度説明の改善
- Authors: Ziwei Zhao, David Leake, Xiaomeng Ye, David Crandall,
- Abstract要約: 最初の実験結果から、CEViTをk-Nearest Neighbor(k-NN)分類に統合すると、最先端のコンピュータビジョンモデルに匹敵する分類精度が得られることが示唆された。
CEViTの説明は、これらのケースに関連する類似性の側面を説明するために、以前のケースに影響される可能性がある。
- 参考スコア(独自算出の注目度): 5.652275189112655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This short paper presents preliminary research on the Case-Enhanced Vision Transformer (CEViT), a similarity measurement method aimed at improving the explainability of similarity assessments for image data. Initial experimental results suggest that integrating CEViT into k-Nearest Neighbor (k-NN) classification yields classification accuracy comparable to state-of-the-art computer vision models, while adding capabilities for illustrating differences between classes. CEViT explanations can be influenced by prior cases, to illustrate aspects of similarity relevant to those cases.
- Abstract(参考訳): 本稿では,画像データに対する類似度評価の説明可能性向上を目的とした類似度測定手法であるCEViTについて予備研究を行う。
最初の実験結果から、CEViTをk-Nearest Neighbor(k-NN)分類に統合すると、最先端のコンピュータビジョンモデルに匹敵する分類精度が得られ、クラス間の違いを説明できる能力が追加されることが示唆された。
CEViTの説明は、これらのケースに関連する類似性の側面を説明するために、以前のケースに影響される可能性がある。
関連論文リスト
- Mind the Gap Between Prototypes and Images in Cross-domain Finetuning [64.97317635355124]
プロトタイプと画像にそれぞれ異なる変換を適用するために,コントラスト型プロトタイプイメージ適応(CoPA)を提案する。
Meta-Datasetの実験では、CoPAが最先端のパフォーマンスをより効率的に達成できることが示されている。
論文 参考訳(メタデータ) (2024-10-16T11:42:11Z) - Variational Autoencoder for Anomaly Detection: A Comparative Study [1.9131868049527914]
本稿では,同時代の変分オートエンコーダ(VAE)アーキテクチャを異常検出に用い比較解析することを目的とする。
検討中のアーキテクチャ構成には、元々のVAEベースライン、ガウスランダムフィールド(VAE-GRF)を持つVAE、ビジョントランスフォーマー(ViT-VAE)を搭載したVAEが含まれる。
論文 参考訳(メタデータ) (2024-08-24T12:07:57Z) - CorrEmbed: Evaluating Pre-trained Model Image Similarity Efficacy with a
Novel Metric [6.904776368895614]
我々は、CorrEmbedという新しいアプローチを用いて、事前訓練されたコンピュータビジョンモデルから画像埋め込みの有効性を評価する。
本研究では,画像埋め込みにおける距離と人為的タグベクトルにおける距離との相関を計算した。
また,このパターンからの逸脱を同定し,異なるモデルが高レベル画像の特徴をどのように捉えているかについての洞察を与える。
論文 参考訳(メタデータ) (2023-08-30T16:23:07Z) - Learning an Adaptation Function to Assess Image Visual Similarities [0.0]
ここでは、類推が重要となるとき、視覚的イメージ類似性を学ぶための特定のタスクに焦点を当てる。
本稿では,異なるスケールとコンテンツデータセットで事前学習した,教師付き,半教師付き,自己教師型ネットワークの比較を提案する。
The Totally Looks Like Image dataset conducted on the Totally Looks Like image highlight the interest of our method, by increase the search scores of the best model @1 by 2.25x。
論文 参考訳(メタデータ) (2022-06-03T07:15:00Z) - Attributable Visual Similarity Learning [90.69718495533144]
本稿では、画像間のより正確で説明可能な類似度測定のための帰属的視覚類似度学習(AVSL)フレームワークを提案する。
人間の意味的類似性認知に動機づけられた2つの画像とグラフとの類似性を表現するために,一般化された類似性学習パラダイムを提案する。
CUB-200-2011、Cars196、Stanford Online Productsデータセットの実験は、既存の深い類似性学習方法よりも大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2022-03-28T17:35:31Z) - Visualizing and Understanding Patch Interactions in Vision Transformer [96.70401478061076]
Vision Transformer (ViT) は様々なコンピュータビジョンタスクにおいて主要なツールとなっている。
本稿では,視覚変換器のパッチ間の重要な注意相互作用を分析し,解釈するための,説明可能な新しい可視化手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T13:48:11Z) - Vision Transformers are Robust Learners [65.91359312429147]
ビジョントランスフォーマー(ViT)の一般的な腐敗や摂動、分布シフト、自然逆転例に対する堅牢性について検討します。
ViTsが実際により堅牢な学習者である理由を説明するために、定量的および定性的な指標を提供する分析を提示します。
論文 参考訳(メタデータ) (2021-05-17T02:39:22Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
ラベル付き限られたデータから新しいカテゴリを認識できる画像分類はほとんどない。
画像分類のための不確実性を考慮したFew-Shotフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-09T12:26:27Z) - A Similarity Inference Metric for RGB-Infrared Cross-Modality Person
Re-identification [66.49212581685127]
IRとRGBの相違が大きいため、モダリティの人物再識別(re-ID)は難しい課題である。
既存のメソッドはこの課題に対処するため、典型的には、特徴分布やイメージスタイルをモダリティ間で整列させることで対処する。
本稿では,モダリティ内サンプルの類似性を利用して,モダリティ間の相違を回避する新しい類似度推定指標(SIM)を提案する。
論文 参考訳(メタデータ) (2020-07-03T05:28:13Z) - Determining Image similarity with Quasi-Euclidean Metric [0.0]
擬似ユークリッド計量を画像類似度尺度として評価し,SSIMやユークリッド計量といった既存の標準手法とどのように一致しているかを分析する。
いくつかのケースでは、我々の方法論は顕著な性能を予測しており、我々の実装が類似性を認識するための一歩であることを証明していることも興味深い。
論文 参考訳(メタデータ) (2020-06-25T18:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。