論文の概要: Variational Autoencoder for Anomaly Detection: A Comparative Study
- arxiv url: http://arxiv.org/abs/2408.13561v1
- Date: Sat, 24 Aug 2024 12:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:59:33.856820
- Title: Variational Autoencoder for Anomaly Detection: A Comparative Study
- Title(参考訳): 異常検出のための変分オートエンコーダの比較検討
- Authors: Huy Hoang Nguyen, Cuong Nhat Nguyen, Xuan Tung Dao, Quoc Trung Duong, Dzung Pham Thi Kim, Minh-Tan Pham,
- Abstract要約: 本稿では,同時代の変分オートエンコーダ(VAE)アーキテクチャを異常検出に用い比較解析することを目的とする。
検討中のアーキテクチャ構成には、元々のVAEベースライン、ガウスランダムフィールド(VAE-GRF)を持つVAE、ビジョントランスフォーマー(ViT-VAE)を搭載したVAEが含まれる。
- 参考スコア(独自算出の注目度): 1.9131868049527914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper aims to conduct a comparative analysis of contemporary Variational Autoencoder (VAE) architectures employed in anomaly detection, elucidating their performance and behavioral characteristics within this specific task. The architectural configurations under consideration encompass the original VAE baseline, the VAE with a Gaussian Random Field prior (VAE-GRF), and the VAE incorporating a vision transformer (ViT-VAE). The findings reveal that ViT-VAE exhibits exemplary performance across various scenarios, whereas VAE-GRF may necessitate more intricate hyperparameter tuning to attain its optimal performance state. Additionally, to mitigate the propensity for over-reliance on results derived from the widely used MVTec dataset, this paper leverages the recently-public MiAD dataset for benchmarking. This deliberate inclusion seeks to enhance result competitiveness by alleviating the impact of domain-specific models tailored exclusively for MVTec, thereby contributing to a more robust evaluation framework. Codes is available at https://github.com/endtheme123/VAE-compare.git.
- Abstract(参考訳): 本論文は,同時代の変分オートエンコーダ(VAE)アーキテクチャを異常検出に適用し,その性能と動作特性について比較解析することを目的とする。
検討中のアーキテクチャ構成には、元々のVAEベースライン、ガウスランダムフィールド(VAE-GRF)を備えたVAE、ビジョントランスフォーマー(ViT-VAE)を搭載したVAEが含まれる。
その結果,VT-VAEは様々なシナリオで模範的性能を示すが,VAE-GRFはより複雑なハイパーパラメータチューニングが必要であり,最適な性能を実現する。
さらに、広く使われているMVTecデータセットから得られる結果に対する過度信頼度を緩和するために、最近公開されたMiADデータセットをベンチマークに活用する。
この意図的な包摂性は、MVTec専用のドメイン固有モデルの影響を軽減することで結果の競争力を高めることを目的としており、その結果、より堅牢な評価フレームワークに寄与する。
Codesはhttps://github.com/endtheme123/VAE-compare.gitで入手できる。
関連論文リスト
- Theoretical Convergence Guarantees for Variational Autoencoders [2.8167997311962942]
変分オートエンコーダ(VAE)は、複雑なデータ分布からサンプリングするために使われる一般的な生成モデルである。
本稿では, グラディエントDescentアルゴリズムとAdamアルゴリズムの両方を用いてトレーニングしたVAEに対して, 非漸近収束保証を提供することにより, このギャップを埋めることを目的とする。
我々の理論的分析は、Linear VAEとDeep Gaussian VAEの両方、および$beta$-VAEやIWAEを含むいくつかのVAEの変種に適用できる。
論文 参考訳(メタデータ) (2024-10-22T07:12:38Z) - Analyzing Local Representations of Self-supervised Vision Transformers [34.56680159632432]
各種自己監督型視覚変換器(ViT)の比較分析を行った。
大規模言語モデルに触発されて、微調整をほとんど行わずに様々なコンピュータビジョンタスクを実行するViTの能力について検討する。
論文 参考訳(メタデータ) (2023-12-31T11:38:50Z) - Matching aggregate posteriors in the variational autoencoder [0.5759862457142761]
変分オートエンコーダ(VAE)は、よく研究され、深い、潜伏変数モデル(DLVM)である。
本稿では,VAE に付随する目的関数を改良することにより,VAE の欠点を克服する。
提案手法はEmphaggregate variational autoencoder (AVAE) と命名され,VAEの理論的枠組みに基づいて構築されている。
論文 参考訳(メタデータ) (2023-11-13T19:22:37Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Vision Transformers are Robust Learners [65.91359312429147]
ビジョントランスフォーマー(ViT)の一般的な腐敗や摂動、分布シフト、自然逆転例に対する堅牢性について検討します。
ViTsが実際により堅牢な学習者である理由を説明するために、定量的および定性的な指標を提供する分析を提示します。
論文 参考訳(メタデータ) (2021-05-17T02:39:22Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Self-Supervised Variational Auto-Encoders [10.482805367361818]
自己教師付き変分自動エンコーダ(self-supervised Variational Auto-Encoder)と呼ばれる新しい生成モデルについて述べる。
このモデルのクラスは、目的関数を単純化しながら、条件付きサンプリングと条件なしサンプリングの両方を実行することができる。
本稿では,3つのベンチマーク画像データ(Cifar10, Imagenette64, CelebA)に対する提案手法の性能について述べる。
論文 参考訳(メタデータ) (2020-10-05T13:42:28Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
本研究は、ファシズムモデルのための連続パラメータ化を構築するためのオートエンコーダネットワークの利用に焦点を当てる。
本稿では,VAE,GAN,Wasserstein GAN,変分自動符号化GAN,サイクルGANの主成分分析(PCA),転送スタイルネットワークのPCA,スタイル損失のVAEの7種類の定式化をベンチマークする。
論文 参考訳(メタデータ) (2020-05-08T21:32:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。