論文の概要: scGHSOM: Hierarchical clustering and visualization of single-cell and CRISPR data using growing hierarchical SOM
- arxiv url: http://arxiv.org/abs/2407.16984v1
- Date: Wed, 24 Jul 2024 04:01:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:53:14.746366
- Title: scGHSOM: Hierarchical clustering and visualization of single-cell and CRISPR data using growing hierarchical SOM
- Title(参考訳): scGHSOM: 階層型SOMを用いた単一セルとCRISPRデータの階層的クラスタリングと可視化
- Authors: Shang-Jung Wen, Jia-Ming Chang, Fang Yu,
- Abstract要約: 階層型自己組織化マップ (GHSOM) を育成するアン教師なしクラスタリングによる包括的遺伝子セル依存性の可視化を提案する。
GHSOMは、クラスタの自己成長構造が必要な変動を満足するように階層構造でクラスタサンプルに適用される。
本稿では,クラスタ特徴マップとクラスタ分布マップの2つの革新的な可視化ツールを提案する。
- 参考スコア(独自算出の注目度): 0.8452349885923507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High-dimensional single-cell data poses significant challenges in identifying underlying biological patterns due to the complexity and heterogeneity of cellular states. We propose a comprehensive gene-cell dependency visualization via unsupervised clustering, Growing Hierarchical Self-Organizing Map (GHSOM), specifically designed for analyzing high-dimensional single-cell data like single-cell sequencing and CRISPR screens. GHSOM is applied to cluster samples in a hierarchical structure such that the self-growth structure of clusters satisfies the required variations between and within. We propose a novel Significant Attributes Identification Algorithm to identify features that distinguish clusters. This algorithm pinpoints attributes with minimal variation within a cluster but substantial variation between clusters. These key attributes can then be used for targeted data retrieval and downstream analysis. Furthermore, we present two innovative visualization tools: Cluster Feature Map and Cluster Distribution Map. The Cluster Feature Map highlights the distribution of specific features across the hierarchical structure of GHSOM clusters. This allows for rapid visual assessment of cluster uniqueness based on chosen features. The Cluster Distribution Map depicts leaf clusters as circles on the GHSOM grid, with circle size reflecting cluster data size and color customizable to visualize features like cell type or other attributes. We apply our analysis to three single-cell datasets and one CRISPR dataset (cell-gene database) and evaluate clustering methods with internal and external CH and ARI scores. GHSOM performs well, being the best performer in internal evaluation (CH=4.2). In external evaluation, GHSOM has the third-best performance of all methods.
- Abstract(参考訳): 高次元単細胞データは、細胞状態の複雑さと不均一性により、基礎となる生物学的パターンを識別する上で大きな課題となる。
単一セルシークエンシングやCRISPRスクリーンなどの高次元単一セルデータの解析に特化して設計されたGHSOM(Growing Hierarchical Self-Organizing Map)を提案する。
GHSOMは、クラスタの自己成長構造が必要な変動を満足するように階層構造でクラスタサンプルに適用される。
本稿では,クラスタを識別する特徴を特定するために,新しい属性同定アルゴリズムを提案する。
このアルゴリズムは、クラスタ内の最小限のばらつきで属性をピンポイントするが、クラスタ間ではかなりのばらつきがある。
これらのキー属性は、ターゲットデータ検索と下流分析に使用できる。
さらに,クラスタ特徴マップとクラスタ分布マップの2つの革新的な可視化ツールを提案する。
Cluster Feature Mapは、GHSOMクラスタの階層構造にまたがる特定の機能の分散を強調している。
これにより、選択した機能に基づいたクラスタのユニークさの迅速な視覚的評価が可能になる。
クラスタ分布マップでは、リーフクラスタをGHSOMグリッド上の円として描いている。
本分析を3つの単一セルデータセットと1つのCRISPRデータセット(セルジーンデータベース)に適用し,内部および外部CHおよびARIスコアを用いたクラスタリング手法の評価を行った。
GHSOMは、内部評価において最高のパフォーマーである(CH=4.2)。
外部評価では、GHSOMは全手法の3番目に高い性能を持つ。
関連論文リスト
- Single-cell Multi-view Clustering via Community Detection with Unknown
Number of Clusters [64.31109141089598]
シングルセルデータに適した,革新的なマルチビュークラスタリング手法である scUNC を導入する。
scUNCは、事前に定義された数のクラスタを必要とせずに、異なるビューからの情報をシームレスに統合する。
3つの異なる単一セルデータセットを用いて,SCUNCの総合評価を行った。
論文 参考訳(メタデータ) (2023-11-28T08:34:58Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Sparse and geometry-aware generalisation of the mutual information for joint discriminative clustering and feature selection [19.066989850964756]
GEMINIと呼ばれる相互情報の幾何を考慮した一般化を最大化しようとする識別クラスタリングモデルを導入する。
このアルゴリズムは,特徴探索の負担を回避し,識別クラスタリングモデルのみを設計しながら,高次元データや大量のサンプルに対して容易にスケーラブルである。
以上の結果から,Sparse GEMINIは競合アルゴリズムであり,関連基準や事前仮説を使わずに,クラスタリングに関して変数の関連するサブセットを選択することができることがわかった。
論文 参考訳(メタデータ) (2023-02-07T10:52:04Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
クラスタ化前にデータセットのトポロジ構造を推定することで,クラスタ検出を大幅に向上させることができることを示す。
位相構造を推定するための多様体学習法UMAPと密度に基づくクラスタリング法DBSCANを組み合わせた。
論文 参考訳(メタデータ) (2022-07-01T15:53:39Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
我々は、注意駆動グラフクラスタリングネットワーク(AGCN)という新しいディープクラスタリング手法を提案する。
AGCNは、ノード属性特徴とトポロジグラフ特徴を動的に融合するために、不均一な融合モジュールを利用する。
AGCNは、教師なしの方法で特徴学習とクラスタ割り当てを共同で行うことができる。
論文 参考訳(メタデータ) (2021-08-12T02:30:38Z) - Swarm Intelligence for Self-Organized Clustering [6.85316573653194]
Databionic Swarm(DBS)と呼ばれるSwarmシステムが導入された。
スウォームインテリジェンス、自己組織化、出現の相互関係を利用して、DBSはクラスタリングのタスクにおけるグローバルな目的関数の最適化に対する代替アプローチとして機能する。
論文 参考訳(メタデータ) (2021-06-10T06:21:48Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Tree-SNE: Hierarchical Clustering and Visualization Using t-SNE [0.0]
Tree-SNEは1次元のt-SNE埋め込みに基づく階層的クラスタリングと可視化アルゴリズムである。
アルファクラスタリングでは、クラスタの数を知ることなく、最適なクラスタ割り当てを推奨している。
本研究は,手書きディジットの画像,血液細胞からの大量CyTOFデータ,網膜細胞からの単細胞RNAシークエンシング(scRNA-seq)データに対するツリーSNEとアルファクラスタリングの有効性を示す。
論文 参考訳(メタデータ) (2020-02-13T18:11:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。