論文の概要: Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization
- arxiv url: http://arxiv.org/abs/2406.13060v1
- Date: Tue, 18 Jun 2024 21:09:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 00:08:09.759992
- Title: Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization
- Title(参考訳): 海洋内孤立波定位のためのスケール-トランスレーション同変ネットワーク
- Authors: Zhang Wan, Shuo Wang, Xudong Zhang,
- Abstract要約: 内部孤立波(英:internal Solitary wave、ISW)は、内部の海洋でしばしば観測される重力波である。
光リモートセンシング画像における雲のカバーは、地表面の情報を可変的に曖昧にし、ぼやけたり、表面の観察を欠いたりする。
本稿では,ISWを自動検出するアルゴリズムを用いた機械学習ソリューションを提案する。
- 参考スコア(独自算出の注目度): 7.444865250744234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface. They hold significant importance due to their capacity to carry substantial energy, thus influence pollutant transport, oil platform operations, submarine navigation, etc. Researchers have studied ISWs through optical images, synthetic aperture radar (SAR) images, and altimeter data from remote sensing instruments. However, cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations. As such, this paper aims at altimeter-based machine learning solutions to automatically locate ISWs. The challenges, however, lie in the following two aspects: 1) the altimeter data has low resolution, which requires a strong machine learner; 2) labeling data is extremely labor-intensive, leading to very limited data for training. In recent years, the grand progress of deep learning demonstrates strong learning capacity given abundant data. Besides, more recent studies on efficient learning and self-supervised learning laid solid foundations to tackle the aforementioned challenges. In this paper, we propose to inject prior knowledge to achieve a strong and efficient learner. Specifically, intrinsic patterns in altimetry data are efficiently captured using a scale-translation equivariant convolutional neural network (ST-ECNN). By considering inherent symmetries in neural network design, ST-ECNN achieves higher efficiency and better performance than baseline models. Furthermore, we also introduce prior knowledge from massive unsupervised data to enhance our solution using the SimCLR framework for pre-training. Our final solution achieves an overall better performance than baselines on our handcrafted altimetry dataset. Data and codes are available at https://github.com/ZhangWan-byte/Internal_Solitary_Wave_Localization .
- Abstract(参考訳): 内部孤立波(英:internal Solitary wave、ISW)は、内部の海洋でしばしば観測される重力波である。
大量のエネルギーを輸送する能力から、汚染物質輸送、石油プラットフォーム運用、潜水艦の航行などに大きな影響を及ぼす。
研究者たちは、光学画像、合成開口レーダー(SAR)画像、およびリモートセンシング機器からの高度データを通じて、ISWを研究した。
しかし、光学式リモートセンシング画像における雲の覆いは、地上の情報を不安定にし、ぼやけたり、表面の観察を欠いたりする。
そこで本論文では,ISWを自動検出するアルゴリズムを用いた機械学習ソリューションを提案する。
しかし、課題は以下の2つの側面にある。
1)高調波データは解像度が低く、強い機械学習者を必要とする。
2) ラベル付けデータは非常に労働集約的であり, トレーニングのためのデータは非常に限られている。
近年,深層学習の進歩により,豊富なデータから学習能力が向上している。
さらに、より最近の効率的な学習と自己指導型学習の研究は、上記の課題に取り組むためのしっかりとした基盤を築き上げている。
本稿では,より強力かつ効率的な学習者を実現するために,事前知識を注入することを提案する。
具体的には、スケール-トランスレーション同変畳み込みニューラルネットワーク(ST-ECNN)を用いて、高度データの固有パターンを効率的にキャプチャする。
ニューラルネットワーク設計の固有の対称性を考慮することで、ST-ECNNはベースラインモデルよりも高い効率とパフォーマンスを実現する。
さらに、事前学習のためにSimCLRフレームワークを使用してソリューションを強化するために、大量の教師なしデータからの事前知識も導入する。
最終的なソリューションは、手作りのアルゴリズムデータセットのベースラインよりも全体的なパフォーマンスが向上します。
データとコードはhttps://github.com/ZhangWan-byte/Internal_Solitary_Wave_Localization で公開されている。
関連論文リスト
- Leveraging Foundation Models for Zero-Shot IoT Sensing [5.319176383069102]
ディープラーニングモデルは、エッジIoT(Internet of Things)デバイスにますますデプロイされている。
ZSLは意味情報の助けを借りて、目に見えないクラスのデータを分類することを目的としている。
本研究では、ゼロショットIoTセンシングのためのFMテキストエンコーダによって生成されたセマンティック埋め込みと、IoTデータの埋め込みを一致させる。
論文 参考訳(メタデータ) (2024-07-29T11:16:48Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Topics in Deep Learning and Optimization Algorithms for IoT Applications
in Smart Transportation [0.0]
この論文は、最適化アルゴリズムと機械学習の異なる手法をどのように活用してシステム性能を向上するかを考察する。
第1のトピックでは、分散ADMM方式を用いた最適な伝送周波数管理方式を提案する。
第2のトピックでは、共有自転車の需要予測にグラフニューラルネットワーク(GNN)を活用する。
最後のトピックでは、頻繁に車線変更行動が発生するハイウェイ交通ネットワークのシナリオについて考察する。
論文 参考訳(メタデータ) (2022-10-13T11:45:30Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Learning to Detect Fortified Areas [0.0]
本研究では,道路,歩道,駐車場,舗装された自動車道,テラスなどによって,ある表面のどの部分が要塞化されているのかを分類する問題を考察する。
本稿では,すべてのセンサシステムからデータを新しい共通表現に変換するニューラルネット埋め込みアーキテクチャを設計し,アルゴリズムによる解を提案する。
論文 参考訳(メタデータ) (2021-05-26T08:03:42Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - On Deep Learning Techniques to Boost Monocular Depth Estimation for
Autonomous Navigation [1.9007546108571112]
画像の深さを推定することはコンピュータビジョンの分野における根本的な逆問題である。
本稿では,新しい特徴抽出モデルと組み合わせ,軽量で高速なCNNアーキテクチャを提案する。
また,SIDE問題を解くために,単純な幾何2.5D損失関数と組み合わせて効率的な表面正規化モジュールを導入する。
論文 参考訳(メタデータ) (2020-10-13T18:37:38Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。