FIIH: Fully Invertible Image Hiding for Secure and Robust
- URL: http://arxiv.org/abs/2407.17155v1
- Date: Wed, 24 Jul 2024 10:53:14 GMT
- Title: FIIH: Fully Invertible Image Hiding for Secure and Robust
- Authors: Lang Huang, Lin Huo, Zheng Gan, Xinrong He,
- Abstract summary: This paper proposes a fully invertible image hiding architecture based on invertible neural network.
Based on this ingenious architecture, the method can withstand deep learning based image steganalysis.
Experiments demonstrate that the FIIH proposed in this paper significantly outperforms other state-of-the-art image hiding methods in hiding a single image.
- Score: 4.073420582409583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image hiding is the study of techniques for covert storage and transmission, which embeds a secret image into a container image and generates stego image to make it similar in appearance to a normal image. However, existing image hiding methods have a serious problem that the hiding and revealing process cannot be fully invertible, which results in the revealing network not being able to recover the secret image losslessly, which makes it impossible to simultaneously achieve high fidelity and secure transmission of the secret image in an insecure network environment. To solve this problem,this paper proposes a fully invertible image hiding architecture based on invertible neural network,aiming to realize invertible hiding of secret images,which is invertible on both data and network. Based on this ingenious architecture, the method can withstand deep learning based image steganalysis. In addition, we propose a new method for enhancing the robustness of stego images after interference during transmission. Experiments demonstrate that the FIIH proposed in this paper significantly outperforms other state-of-the-art image hiding methods in hiding a single image, and also significantly outperforms other state-of-the-art methods in robustness and security.
Related papers
- Diffusion-Based Hierarchical Image Steganography [60.69791384893602]
Hierarchical Image Steganography is a novel method that enhances the security and capacity of embedding multiple images into a single container.
It exploits the robustness of the Diffusion Model alongside the reversibility of the Flow Model.
The innovative structure can autonomously generate a container image, thereby securely and efficiently concealing multiple images and text.
arXiv Detail & Related papers (2024-05-19T11:29:52Z) - Double-Flow-based Steganography without Embedding for Image-to-Image
Hiding [14.024920153517174]
steganography without embedding (SWE) hides a secret message without directly embedding it into a cover.
SWE has the unique advantage of being immune to typical steganalysis methods and can better protect the secret message from being exposed.
Existing SWE methods are generally criticized for their poor payload capacity and low fidelity of recovered secret messages.
arXiv Detail & Related papers (2023-11-25T13:44:37Z) - PRIS: Practical robust invertible network for image steganography [10.153270845070676]
Image steganography is a technique of hiding secret information inside another image, so that the secret is not visible to human eyes.
Most of the existing image steganography methods have low hiding robustness when the container images affected by distortion.
This paper proposed PRIS to improve the robustness of image steganography, it based on invertible neural networks.
arXiv Detail & Related papers (2023-09-24T12:29:13Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
We describe a different computational framework to hide images in deep probabilistic models.
Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution.
We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security.
arXiv Detail & Related papers (2022-10-05T13:33:25Z) - Image Steganography based on Style Transfer [12.756859984638961]
We propose image steganography network based on style transfer.
We embed secret information while transforming the content image style.
In latent space, the secret information is integrated into the latent representation of the cover image to generate the stego images.
arXiv Detail & Related papers (2022-03-09T02:58:29Z) - Multitask Identity-Aware Image Steganography via Minimax Optimization [9.062839197237807]
We propose a framework, called Multitask Identity-Aware Image Steganography (MIAIS), to achieve direct recognition on container images without restoring secret images.
The key issue of the direct recognition is to preserve identity information of secret images into container images and make container images look similar to cover images at the same time.
In order to be flexible for the secret image restoration in some cases, we incorporate an optional restoration network into our method.
arXiv Detail & Related papers (2021-07-13T02:53:38Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images.
The deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images.
arXiv Detail & Related papers (2020-03-30T17:45:07Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.