論文の概要: Context-aware Multi-task Learning for Pedestrian Intent and Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2407.17162v1
- Date: Wed, 24 Jul 2024 11:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 14:14:00.012052
- Title: Context-aware Multi-task Learning for Pedestrian Intent and Trajectory Prediction
- Title(参考訳): 歩行者インテントのコンテキスト認識型マルチタスク学習と軌道予測
- Authors: Farzeen Munir, Tomasz Piotr Kucner,
- Abstract要約: 我々は,過去の軌跡観測,局所的文脈特徴,グローバルな特徴を組み合わせることで,軌跡と意図の予測を学習するPTINetを紹介する。
提案手法の有効性は, JAAD と PIE を用いて評価した。
PTINetは、都市環境で歩行者とシームレスに対話できる自動システムの開発の道を開く。
- 参考スコア(独自算出の注目度): 3.522062800701924
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The advancement of socially-aware autonomous vehicles hinges on precise modeling of human behavior. Within this broad paradigm, the specific challenge lies in accurately predicting pedestrian's trajectory and intention. Traditional methodologies have leaned heavily on historical trajectory data, frequently overlooking vital contextual cues such as pedestrian-specific traits and environmental factors. Furthermore, there's a notable knowledge gap as trajectory and intention prediction have largely been approached as separate problems, despite their mutual dependence. To bridge this gap, we introduce PTINet (Pedestrian Trajectory and Intention Prediction Network), which jointly learns the trajectory and intention prediction by combining past trajectory observations, local contextual features (individual pedestrian behaviors), and global features (signs, markings etc.). The efficacy of our approach is evaluated on widely used public datasets: JAAD and PIE, where it has demonstrated superior performance over existing state-of-the-art models in trajectory and intention prediction. The results from our experiments and ablation studies robustly validate PTINet's effectiveness in jointly exploring intention and trajectory prediction for pedestrian behaviour modelling. The experimental evaluation indicates the advantage of using global and local contextual features for pedestrian trajectory and intention prediction. The effectiveness of PTINet in predicting pedestrian behavior paves the way for the development of automated systems capable of seamlessly interacting with pedestrians in urban settings.
- Abstract(参考訳): 社会的に認識された自動運転車の進歩は、人間の行動の正確なモデリングに依存している。
この幅広いパラダイムの中で、特定の課題は歩行者の軌道と意図を正確に予測することにある。
伝統的な方法論は歴史的軌跡データに大きく依存しており、しばしば歩行者特有の特徴や環境要因といった重要な状況の手がかりを見落としている。
さらに、軌跡と意図予測は、相互依存にもかかわらず、主に別の問題としてアプローチされてきたため、顕著な知識ギャップがある。
このギャップを埋めるために,過去の軌道観測,局所的状況的特徴(個人的歩行者行動),グローバルな特徴(標識,マーキングなど)を組み合わせることで,軌道と意図の予測を共同で学習するPTINet(Pedestrian Trajectory and Intention Prediction Network)を紹介した。
提案手法の有効性は, JAAD と PIE で評価され, 軌道および意図予測における既存の最先端モデルよりも優れた性能を示した。
本実験およびアブレーション研究の結果は,歩行者行動モデリングのための意図と軌道予測を共同で検討する上で,PTINetの有効性を確実に検証した。
実験により, 歩行者軌跡と意図予測にグローバル・ローカル・コンテクスト的特徴を用いることの利点が示された。
歩行者行動予測におけるPTINetの有効性は、都市部における歩行者とのシームレスな対話が可能な自動システムの開発の道を開くものである。
関連論文リスト
- Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Comparison of Pedestrian Prediction Models from Trajectory and
Appearance Data for Autonomous Driving [13.126949982768505]
歩行者の動きを予測できる能力は、自動運転車にとって重要な能力である。
都市環境では、歩行者は道路エリアに入り、運転のリスクが高い。
本研究は,歩行者予測のための軌跡のみと外観に基づく手法の比較評価を行う。
論文 参考訳(メタデータ) (2023-05-25T11:24:38Z) - Action-based Contrastive Learning for Trajectory Prediction [4.675212251005813]
軌道予測は、自律運転など、人間のロボットのインタラクションを成功させる上で不可欠なタスクである。
本研究では,移動カメラを用いたファースト・パーソン・ビュー・セッティングにおける将来の歩行者軌跡予測の問題に対処する。
本稿では,歩行者行動情報を利用して学習軌跡埋め込みを改善する,新たな行動に基づくコントラスト学習損失を提案する。
論文 参考訳(メタデータ) (2022-07-18T15:02:27Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
本稿では,トランジタブルグラフニューラルネットワーク(Transferable Graph Neural Network, T-GNN)フレームワークを提案する。
具体的には、ドメイン固有知識が減少する構造運動知識を探索するために、ドメイン不変GNNを提案する。
さらに,注目に基づく適応的知識学習モジュールを提案し,知識伝達のための詳細な個別レベルの特徴表現について検討した。
論文 参考訳(メタデータ) (2022-03-09T21:08:47Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。