Quantile Learn-Then-Test: Quantile-Based Risk Control for Hyperparameter Optimization
- URL: http://arxiv.org/abs/2407.17358v1
- Date: Wed, 24 Jul 2024 15:30:12 GMT
- Title: Quantile Learn-Then-Test: Quantile-Based Risk Control for Hyperparameter Optimization
- Authors: Amirmohammad Farzaneh, Sangwoo Park, Osvaldo Simeone,
- Abstract summary: This work introduces a variant of learn-then-test (LTT) that is designed to provide statistical guarantees on quantiles of a risk measure.
We illustrate the practical advantages of this approach by applying the proposed algorithm to a radio access scheduling problem.
- Score: 36.14499894307206
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing adoption of Artificial Intelligence (AI) in engineering problems calls for the development of calibration methods capable of offering robust statistical reliability guarantees. The calibration of black box AI models is carried out via the optimization of hyperparameters dictating architecture, optimization, and/or inference configuration. Prior work has introduced learn-then-test (LTT), a calibration procedure for hyperparameter optimization (HPO) that provides statistical guarantees on average performance measures. Recognizing the importance of controlling risk-aware objectives in engineering contexts, this work introduces a variant of LTT that is designed to provide statistical guarantees on quantiles of a risk measure. We illustrate the practical advantages of this approach by applying the proposed algorithm to a radio access scheduling problem.
Related papers
- A Hybrid Sampling and Multi-Objective Optimization Approach for Enhanced Software Defect Prediction [3.407555189785573]
This paper introduces a novel SDP framework that integrates hybrid sampling techniques, with a suite of multi-objective optimization algorithms.
The proposed model applies feature fusion through multi-objective optimization, enhancing both the generalization capability and stability of the predictions.
Experiments conducted on datasets from NASA and PROMISE repositories demonstrate that the proposed hybrid sampling and multi-objective optimization approach improves data balance, eliminates redundant features, and enhances prediction accuracy.
arXiv Detail & Related papers (2024-10-13T23:39:04Z) - Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection [35.88667386998423]
We introduce adaptive learn-then-test (aLTT), which provides finite-sample statistical guarantees on the population risk of AI models.
ALTT can reduce the number of testing rounds, making it well-suited for scenarios in which testing is costly or presents safety risks.
arXiv Detail & Related papers (2024-09-24T08:14:26Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Risk-Controlling Model Selection via Guided Bayesian Optimization [35.53469358591976]
We find a configuration that adheres to user-specified limits on certain risks while being useful with respect to other conflicting metrics.
Our method identifies a set of optimal configurations residing in a designated region of interest.
We demonstrate the effectiveness of our approach on a range of tasks with multiple desiderata, including low error rates, equitable predictions, handling spurious correlations, managing rate and distortion in generative models, and reducing computational costs.
arXiv Detail & Related papers (2023-12-04T07:29:44Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
Reinforcement learning (RL) is a control approach that can handle nonlinear optimal control problems.
Despite the promise exhibited, RL has yet to see marked translation to industrial practice.
We propose an 'oracle'-assisted constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-11-16T13:16:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.