論文の概要: ViPer: Visual Personalization of Generative Models via Individual Preference Learning
- arxiv url: http://arxiv.org/abs/2407.17365v1
- Date: Wed, 24 Jul 2024 15:42:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-25 13:25:07.065360
- Title: ViPer: Visual Personalization of Generative Models via Individual Preference Learning
- Title(参考訳): ViPer:個人選好学習による生成モデルの視覚的パーソナライズ
- Authors: Sogand Salehi, Mahdi Shafiei, Teresa Yeo, Roman Bachmann, Amir Zamir,
- Abstract要約: 本稿では,画像生成プロセスのパーソナライズを,ユーザの汎用的な嗜好を1回に分けて行うことを提案する。
これらのコメントに基づいて、ユーザの構造化された好き嫌いや視覚的属性を推測する。
これらの属性は、個々のユーザの視覚的嗜好に合わせて調整された画像を生成するために、テキスト・ツー・イメージ・モデルを導くために使用される。
- 参考スコア(独自算出の注目度): 11.909247529297678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Different users find different images generated for the same prompt desirable. This gives rise to personalized image generation which involves creating images aligned with an individual's visual preference. Current generative models are, however, unpersonalized, as they are tuned to produce outputs that appeal to a broad audience. Using them to generate images aligned with individual users relies on iterative manual prompt engineering by the user which is inefficient and undesirable. We propose to personalize the image generation process by first capturing the generic preferences of the user in a one-time process by inviting them to comment on a small selection of images, explaining why they like or dislike each. Based on these comments, we infer a user's structured liked and disliked visual attributes, i.e., their visual preference, using a large language model. These attributes are used to guide a text-to-image model toward producing images that are tuned towards the individual user's visual preference. Through a series of user studies and large language model guided evaluations, we demonstrate that the proposed method results in generations that are well aligned with individual users' visual preferences.
- Abstract(参考訳): 異なるユーザは、同じプロンプトのために生成された異なる画像を見つける。
これにより、個人の視覚的嗜好に沿った画像を作成することを含む、パーソナライズされた画像生成が生まれる。
しかし、現在の生成モデルは、幅広い聴衆にアピールするアウトプットを生成するように調整されているため、個人化されていない。
個々のユーザに合わせて画像を生成するには、非効率で望ましくないユーザによる反復的な手動プロンプトエンジニアリングに頼る。
そこで本稿では,まず利用者の嗜好を1回に1回に分けて個人化し,画像の選択にコメントするよう促すことにより,画像生成過程をパーソナライズすることを提案する。
これらのコメントに基づいて、大きな言語モデルを用いて、ユーザの構造化された好ましくない視覚属性、すなわち視覚的嗜好を推測する。
これらの属性は、個々のユーザの視覚的嗜好に合わせて調整された画像を生成するために、テキスト・ツー・イメージ・モデルを導くために使用される。
一連のユーザスタディと大規模言語モデルによる評価を通じて,提案手法が個々のユーザの視覚的嗜好によく適合する世代を導出することを示す。
関連論文リスト
- DRC: Enhancing Personalized Image Generation via Disentangled Representation Composition [69.10628479553709]
大規模マルチモーダルモデル(LMM)を拡張した新しいパーソナライズされた画像生成フレームワークであるDRCを紹介する。
DRCは、履歴画像と参照画像から、ユーザスタイルの好みと意味的な意図をそれぞれ明示的に抽出する。
本研究は2つの重要な学習段階を包含する。1) スタイルと意味的特徴を明確に分離するために二重解離型学習を用い,難易度を考慮した再構成駆動型パラダイムを用いて最適化し,2) パーソナライズド・パーソナライズド・パーソナライズド・ジェネレーションを効果的に適用するパーソナライズド・モデリング。
論文 参考訳(メタデータ) (2025-04-24T08:10:10Z) - Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy [28.647935556492957]
ユーザのプロンプトと修正中の画像の相互情報を用いた人間機械協調型適応戦略を提案する。
改良されたモデルにより、複数ラウンドの調整の必要性が軽減されることが判明した。
論文 参考訳(メタデータ) (2025-01-25T10:32:00Z) - Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
拡散モデルとパーソナライズされた嗜好を整合させるマルチリワード最適化の目的であるPDを導入する。
PPDでは、拡散モデルがユーザーの個人の好みを数秒で学習する。
提案手法は,Stable Cascadeに対して平均76%の勝利率を達成し,特定のユーザの好みをより正確に反映した画像を生成する。
論文 参考訳(メタデータ) (2025-01-11T22:38:41Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPOは、言語モデルにおける好みの最適化をパーソナライズする手法である。
ComPRedはRedditからコミュニティレベルの好みを持った質問応答データセットです。
論文 参考訳(メタデータ) (2024-10-21T14:02:40Z) - Personalized Image Generation with Large Multimodal Models [47.289887243367055]
そこで我々はPersonalized Image Generation Framework(PSH)を提案し,ユーザの視覚的嗜好やニーズをノイズの多いユーザ履歴やマルチモーダルな指示から捉える。
パーソナライズされたステッカーとポスター生成にPigeonを応用し,様々な生成ベースラインよりも定量的な結果と人的評価が優れていることを示す。
論文 参考訳(メタデータ) (2024-10-18T04:20:46Z) - JeDi: Joint-Image Diffusion Models for Finetuning-Free Personalized Text-to-Image Generation [49.997839600988875]
既存のパーソナライズ手法は、ユーザのカスタムデータセット上でテキスト・ツー・イメージの基礎モデルを微調整することに依存している。
ファインタニングフリーのパーソナライズモデルを学ぶための効果的な手法として,ジョイントイメージ拡散(jedi)を提案する。
本モデルは,従来のファインタニングベースとファインタニングフリーのパーソナライゼーションベースの両方において,定量的かつ定性的に,高い品質を実現する。
論文 参考訳(メタデータ) (2024-07-08T17:59:02Z) - U-VAP: User-specified Visual Appearance Personalization via Decoupled Self Augmentation [18.841473623776153]
最先端のパーソナライズモデルでは、被写体全体をオーバーフィットさせる傾向があり、画素空間における視覚的特徴を乱すことはできない。
ユーザ固有の視覚属性を学習するために,ターゲット関連および非ターゲットサンプルを生成するために,新たなデカップリング自己拡張戦略を提案する。
SOTAパーソナライズ手法による様々な視覚特性の実験は、新規な文脈における対象の視覚的外観を模倣する手法の能力を示している。
論文 参考訳(メタデータ) (2024-03-29T15:20:34Z) - Learning User Embeddings from Human Gaze for Personalised Saliency Prediction [12.361829928359136]
本稿では,自然画像のペアと対応する相性マップからユーザ埋め込みを抽出する新しい手法を提案する。
提案手法のコアとなるのは,異なるユーザのイメージと個人満足度マップのペアを対比することにより,ユーザの埋め込みを学習する,シームズ畳み込みニューラルエンコーダである。
論文 参考訳(メタデータ) (2024-03-20T14:58:40Z) - Personalized Language Modeling from Personalized Human Feedback [49.344833339240566]
人間のフィードバックからの強化学習(Reinforcement Learning from Human Feedback, RLHF)は、人間の好みに合わせて大きな言語モデルを微調整するために一般的に用いられる。
本研究では,パーソナライズされた言語モデルを構築する手法を開発することにより,この問題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-02-06T04:18:58Z) - Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image
Personalization [56.12990759116612]
Pick-and-Drawは、パーソナライズ手法のアイデンティティ一貫性と生成多様性を高めるためのトレーニング不要なセマンティックガイダンスアプローチである。
提案手法は、パーソナライズされた拡散モデルに適用可能であり、単一の参照画像のみを必要とする。
論文 参考訳(メタデータ) (2024-01-30T05:56:12Z) - User-Aware Prefix-Tuning is a Good Learner for Personalized Image
Captioning [35.211749514733846]
従来の画像キャプション方式は、ユーザの好みや特徴を無視することが多い。
既存のほとんどの手法は、メモリネットワークやトランスフォーマーによるユーザコンテキストの融合プロセスを強調している。
本稿では,ユーザコンテキストを利用したパーソナライズされた画像キャプションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-08T02:08:00Z) - Identity Encoder for Personalized Diffusion [57.1198884486401]
パーソナライズのためのエンコーダに基づくアプローチを提案する。
我々は、被写体の参照画像の集合からアイデンティティ表現を抽出できるアイデンティティエンコーダを学習する。
提案手法は画像生成と再構成の両方において既存の微調整に基づくアプローチより一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-14T23:32:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。