論文の概要: Co-designing an AI Impact Assessment Report Template with AI Practitioners and AI Compliance Experts
- arxiv url: http://arxiv.org/abs/2407.17374v1
- Date: Wed, 24 Jul 2024 15:53:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 13:25:07.055534
- Title: Co-designing an AI Impact Assessment Report Template with AI Practitioners and AI Compliance Experts
- Title(参考訳): AI実践者とAIコンプライアンスの専門家によるAI影響評価レポートテンプレートの共同設計
- Authors: Edyta Bogucka, Marios Constantinides, Sanja Šćepanović, Daniele Quercia,
- Abstract要約: 我々は,EU AI Act, NIST's AI Risk Management Framework, ISO 42001 AI Management Systemに根ざしたインパクトアセスメントレポートのテンプレートを提案する。
同一企業の8人のAI実践者と業界と学界の5人のAIコンプライアンス専門家によるユーザスタディによると、私たちのテンプレートは、インパクトアセスメントに必要な情報を効果的に提供しています。
- 参考スコア(独自算出の注目度): 2.9532099650028076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the evolving landscape of AI regulation, it is crucial for companies to conduct impact assessments and document their compliance through comprehensive reports. However, current reports lack grounding in regulations and often focus on specific aspects like privacy in relation to AI systems, without addressing the real-world uses of these systems. Moreover, there is no systematic effort to design and evaluate these reports with both AI practitioners and AI compliance experts. To address this gap, we conducted an iterative co-design process with 14 AI practitioners and 6 AI compliance experts and proposed a template for impact assessment reports grounded in the EU AI Act, NIST's AI Risk Management Framework, and ISO 42001 AI Management System. We evaluated the template by producing an impact assessment report for an AI-based meeting companion at a major tech company. A user study with 8 AI practitioners from the same company and 5 AI compliance experts from industry and academia revealed that our template effectively provides necessary information for impact assessments and documents the broad impacts of AI systems. Participants envisioned using the template not only at the pre-deployment stage for compliance but also as a tool to guide the design stage of AI uses.
- Abstract(参考訳): AI規制の進化する状況において、企業は影響評価を行い、包括的なレポートを通じてコンプライアンスを文書化することが不可欠である。
しかし、現在のレポートでは規制の根拠がなく、多くの場合、これらのシステムの現実的な使用に対処することなく、AIシステムに関するプライバシーのような特定の側面に焦点を当てている。
さらに、これらのレポートをAI実践者とAIコンプライアンスの専門家の両方で設計し、評価するための体系的な努力は存在しない。
このギャップに対処するため、14人のAI実践者と6人のAIコンプライアンス専門家による反復的共同設計プロセスを実施し、EU AI Act、NISTのAIリスク管理フレームワーク、ISO 42001 AI Management Systemに根ざした影響評価レポートのテンプレートを提案した。
大手IT企業におけるAIベースのミーティングコンパニオンのインパクトアセスメントレポートを作成し,テンプレートの評価を行った。
同じ企業の8人のAI実践者と、業界と学界の5人のAIコンプライアンスの専門家によるユーザスタディによると、私たちのテンプレートは、AIシステムの影響を効果的に評価し、ドキュメント化するために必要な情報を提供しています。
参加者は、コンプライアンスのための事前デプロイ段階だけでなく、AI使用の設計段階をガイドするツールとしても、テンプレートを使用することを想定していた。
関連論文リスト
- AI Cards: Towards an Applied Framework for Machine-Readable AI and Risk Documentation Inspired by the EU AI Act [2.1897070577406734]
その重要性にもかかわらず、AI法に沿ったAIとリスクドキュメントの作成を支援するための標準やガイドラインが欠如している。
提案するAIカードは,AIシステムの意図した使用を表現するための,新しい総合的なフレームワークである。
論文 参考訳(メタデータ) (2024-06-26T09:51:49Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
Particip-AIは、現在および将来のAIユースケースと、非専門家から損害と利益を収集するフレームワークである。
人口統計学的に多様な参加者295名から回答を得た。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
ハイレベルなAI倫理原則と、AI専門家のための低レベルな具体的なプラクティスの間には、大きなギャップがある。
我々は、理論と実践のギャップを埋めるために設計された、信頼に値するAIのための新しい総合的なフレームワークを開発する。
私たちの目標は、AIプロフェッショナルが信頼できるAIの倫理的側面を確実にナビゲートできるようにすることです。
論文 参考訳(メタデータ) (2024-02-08T01:05:16Z) - AI auditing: The Broken Bus on the Road to AI Accountability [1.9758196889515185]
「AI監査」エコシステムは泥だらけで不正確で、様々な概念を掘り下げて、実践に関わるステークホルダーをマップアウトするのは困難です。
まず、規制当局、法律事務所、市民社会、ジャーナリズム、アカデミック、コンサルティング機関による現在のAI監査の実践を分類する。
私たちは、AI監査研究のごく一部だけが、望ましい説明責任の結果に変換されていることに気付きました。
論文 参考訳(メタデータ) (2024-01-25T19:00:29Z) - Guideline for Trustworthy Artificial Intelligence -- AI Assessment
Catalog [0.0]
AIアプリケーションとそれに基づくビジネスモデルが、高品質な標準に従って開発されている場合にのみ、その潜在能力を最大限に発揮できることは明らかです。
AIアプリケーションの信頼性の問題は非常に重要であり、多くの主要な出版物の主題となっている。
このAIアセスメントカタログは、まさにこの点に対応しており、2つのターゲットグループを対象としている。
論文 参考訳(メタデータ) (2023-06-20T08:07:18Z) - Responsible Design Patterns for Machine Learning Pipelines [10.184056098238765]
AI倫理には、AIシステムのライフサイクル全体に倫理的原則を適用することが含まれる。
これは、バイアスなどのAIに関連する潜在的なリスクと害を軽減するために不可欠である。
この目標を達成するために、責任あるデザインパターン(RDP)は機械学習(ML)パイプラインに不可欠である。
論文 参考訳(メタデータ) (2023-05-31T15:47:12Z) - An Uncommon Task: Participatory Design in Legal AI [64.54460979588075]
われわれは10年以上前に行われた法律分野における、注目に値する、未調査のAI設計プロセスについて検討する。
インタラクティブなシミュレーション手法によって,コンピュータ科学者と弁護士が共同設計者になれることを示す。
論文 参考訳(メタデータ) (2022-03-08T15:46:52Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。