論文の概要: Causal modelling without counterfactuals and individualised effects
- arxiv url: http://arxiv.org/abs/2407.17385v1
- Date: Wed, 24 Jul 2024 16:07:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 13:15:22.821416
- Title: Causal modelling without counterfactuals and individualised effects
- Title(参考訳): 反事実のない因果モデリングと個人化効果
- Authors: Benedikt Höltgen, Robert C. Williamson,
- Abstract要約: 本稿では,すべての仮定が検証可能な有限集団に対する因果推論を治療学的予測として解釈する。
この新しい枠組みは、因果関係のモデル依存性と、統計的および科学的推論の違いを強調している。
- 参考スコア(独自算出の注目度): 7.09435109588801
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The most common approach to causal modelling is the potential outcomes framework due to Neyman and Rubin. In this framework, outcomes of counterfactual treatments are assumed to be well-defined. This metaphysical assumption is often thought to be problematic yet indispensable. The conventional approach relies not only on counterfactuals, but also on abstract notions of distributions and assumptions of independence that are not directly testable. In this paper, we construe causal inference as treatment-wise predictions for finite populations where all assumptions are testable; this means that one can not only test predictions themselves (without any fundamental problem), but also investigate sources of error when they fail. The new framework highlights the model-dependence of causal claims as well as the difference between statistical and scientific inference.
- Abstract(参考訳): 因果モデリングにおける最も一般的なアプローチは、NeymanとRubinによる潜在的な結果フレームワークである。
この枠組みでは、カウンターファクト処理の結果が適切に定義されていると仮定される。
このメタ物理的な仮定は、しばしば問題であるが不可欠であると考えられている。
従来のアプローチは、反事実だけでなく、直接的に検証できない分布や独立性の仮定の抽象的な概念にも依存している。
本稿では,すべての仮定が検証可能な有限集団に対する治療的予測として因果推論を解釈する。これは,予測自体を(基本的な問題なく)テストできるだけでなく,失敗してもエラーの原因を調査できることを意味している。
この新しい枠組みは、因果関係のモデル依存性と、統計的および科学的推論の違いを強調している。
関連論文リスト
- Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative Models [13.527864898609398]
カーネルスコアに対する最初のバイアス-分散-共分散分解を導入する。
不確実性推定のためのカーネルベースの分散とエントロピーを導出する。
カーネルの広範な適用性に基づいて、画像、音声、言語生成のための一般化および不確実性実験を通じて、我々のフレームワークを実証する。
論文 参考訳(メタデータ) (2023-10-09T16:22:11Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
クロスモーダル検索手法は、共通表現空間を共同学習することにより、視覚と言語モダリティの類似性関係を構築する。
しかし、この予測は、低品質なデータ、例えば、腐敗した画像、速いペースの動画、詳細でないテキストによって引き起こされるアレタリック不確実性のために、しばしば信頼性が低い。
本稿では, 原型に基づくAleatoric Uncertainity Quantification (PAU) フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:41:19Z) - Self-Compatibility: Evaluating Causal Discovery without Ground Truth [28.72650348646176]
本研究では,基底真理が存在しない場合に因果発見アルゴリズムの出力をfalsificationする新しい手法を提案する。
我々の重要な洞察は、統計的学習がデータポイントのサブセット間の安定性を求める一方で、因果学習は変数のサブセット間の安定性を求めるべきであるということである。
本研究では,不整合性の検出が,仮定や誤差が有限なサンプル効果によって誤って因果関係を推定することを証明する。
論文 参考訳(メタデータ) (2023-07-18T18:59:42Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
本研究では,異なるドメインで生成された場合,サンプルがどのようなものであったのかを仮定した,ドメイン反事実と呼ばれる特定のタイプの因果クエリを解析する。
本研究では, 潜在構造因果モデル (SCM) の回復は, ドメイン・デファクト・デファクトを推定するために不要であることを示す。
また、モデル生成過程を単純化し、生成モデル推定を行うための理論的基盤となる実用的なアルゴリズムも開発する。
論文 参考訳(メタデータ) (2023-06-20T04:19:06Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Axiomatization of Interventional Probability Distributions [4.02487511510606]
因果的介入は、do-calculusの規則の下で公理化される。
我々の公理化の下では、インターベンジド分布は定義されたインターベンジド因果グラフに対するマルコフ分布であることが示される。
また、自然構造因果モデルの大規模なクラスが、ここで提示される理論を満たすことを示す。
論文 参考訳(メタデータ) (2023-05-08T06:07:42Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - A General Framework for Distributed Inference with Uncertain Models [14.8884251609335]
異種エージェントのネットワークを用いた分散分類の問題について検討する。
我々は、エージェントの不確実性を可能性に組み込む不確実性モデルの概念に基づいて構築する。
論文 参考訳(メタデータ) (2020-11-20T22:17:12Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。