Tensor Network enhanced Dynamic Multiproduct Formulas
- URL: http://arxiv.org/abs/2407.17405v3
- Date: Tue, 8 Oct 2024 14:14:53 GMT
- Title: Tensor Network enhanced Dynamic Multiproduct Formulas
- Authors: Niall F. Robertson, Bibek Pokharel, Bryce Fuller, Eric Switzer, Oles Shtanko, Mirko Amico, Adam Byrne, Andrea D'Urbano, Salome Hayes-Shuptar, Albert Akhriev, Nathan Keenan, Sergey Bravyi, Sergiy Zhuk,
- Abstract summary: We introduce a novel algorithm that combines tensor networks and quantum computation to produce results more accurate than what could be achieved by either method used in isolation.
Our algorithm is based on multiproduct formulas (MPF) - a technique that linearly combines Trotter product formulas to reduce algorithmic error.
We present a detailed error analysis of the algorithm and demonstrate the full workflow on a one-dimensional quantum simulation problem on $50$ qubits using two IBM quantum computers.
- Score: 2.3249255788359813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor networks and quantum computation are two of the most powerful tools for the simulation of quantum many-body systems. Rather than viewing them as competing approaches, here we consider how these two methods can work in tandem. We introduce a novel algorithm that combines tensor networks and quantum computation to produce results that are more accurate than what could be achieved by either method used in isolation. Our algorithm is based on multiproduct formulas (MPF) - a technique that linearly combines Trotter product formulas to reduce algorithmic error. Our algorithm uses a quantum computer to calculate the expectation values and tensor networks to calculate the coefficients used in the linear combination. We present a detailed error analysis of the algorithm and demonstrate the full workflow on a one-dimensional quantum simulation problem on $50$ qubits using two IBM quantum computers: $ibm\_torino$ and $ibm\_kyiv$.
Related papers
- Towards efficient quantum algorithms for diffusion probability models [17.785526511644587]
Diffusion model (DPM) is renowned for its ability to produce high-quality outputs in tasks such as image and audio generation.
We introduce efficient quantum algorithms for implementing DPMs through various quantum solvers.
arXiv Detail & Related papers (2025-02-20T04:39:09Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Two quantum algorithms for solving the one-dimensional
advection-diffusion equation [0.0]
Two quantum algorithms are presented for the numerical solution of a linear one-dimensional advection-diffusion equation with periodic boundary conditions.
Their accuracy and performance with increasing qubit number are compared point-by-point with each other.
arXiv Detail & Related papers (2023-12-30T21:23:15Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Pricing multi-asset derivatives by variational quantum algorithms [0.6181093777643575]
We use variational quantum simulation to solve the Black-Scholes equation and compute the derivative price from the inner product between the solution and a probability distribution.
This avoids the measurement bottleneck of the naive approach and would provide quantum speedup even in noisy quantum computers.
arXiv Detail & Related papers (2022-07-04T09:11:15Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor
Network States Algorithm [0.0]
Algorithm is up to $2$ orders of magnitudes faster than Sch$ddottexto$dinger-Feynman algorithm.
We simulate larger random quantum circuits up to $104$ qubits, showing that this algorithm is an ideal tool to verify relatively shallow quantum circuits on near-term quantum computers.
arXiv Detail & Related papers (2020-11-05T02:20:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.