Towards efficient quantum algorithms for diffusion probability models
- URL: http://arxiv.org/abs/2502.14252v1
- Date: Thu, 20 Feb 2025 04:39:09 GMT
- Title: Towards efficient quantum algorithms for diffusion probability models
- Authors: Yunfei Wang, Ruoxi Jiang, Yingda Fan, Xiaowei Jia, Jens Eisert, Junyu Liu, Jin-Peng Liu,
- Abstract summary: Diffusion model (DPM) is renowned for its ability to produce high-quality outputs in tasks such as image and audio generation.
We introduce efficient quantum algorithms for implementing DPMs through various quantum solvers.
- Score: 17.785526511644587
- License:
- Abstract: A diffusion probabilistic model (DPM) is a generative model renowned for its ability to produce high-quality outputs in tasks such as image and audio generation. However, training DPMs on large, high-dimensional datasets such as high-resolution images or audio incurs significant computational, energy, and hardware costs. In this work, we introduce efficient quantum algorithms for implementing DPMs through various quantum ODE solvers. These algorithms highlight the potential of quantum Carleman linearization for diverse mathematical structures, leveraging state-of-the-art quantum linear system solvers (QLSS) or linear combination of Hamiltonian simulations (LCHS). Specifically, we focus on two approaches: DPM-solver-$k$ which employs exact $k$-th order derivatives to compute a polynomial approximation of $\epsilon_\theta(x_\lambda,\lambda)$; and UniPC which uses finite difference of $\epsilon_\theta(x_\lambda,\lambda)$ at different points $(x_{s_m}, \lambda_{s_m})$ to approximate higher-order derivatives. As such, this work represents one of the most direct and pragmatic applications of quantum algorithms to large-scale machine learning models, presumably talking substantial steps towards demonstrating the practical utility of quantum computing.
Related papers
- Design nearly optimal quantum algorithm for linear differential equations via Lindbladians [11.53984890996377]
We propose a new quantum algorithm for ODEs by harnessing open quantum systems.
We use the natural non-unitary dynamics of Lindbladians with the aid of a new technique called the non-diagonal density matrix encoding.
Our algorithm can outperform all existing quantum ODE algorithms and achieve near-optimal dependence on all parameters.
arXiv Detail & Related papers (2024-10-25T15:27:41Z) - Quantum-Trajectory-Inspired Lindbladian Simulation [15.006625290843187]
We propose two quantum algorithms for simulating the dynamics of open quantum systems governed by Lindbladians.
The first algorithm achieves a gate complexity independent of the number of jump operators, $m$, marking a significant improvement in efficiency.
The second algorithm achieves near-optimal dependence on the evolution time $t$ and precision $epsilon$ and introduces only an additional $tildeO(m)$ factor.
arXiv Detail & Related papers (2024-08-20T03:08:27Z) - Tensor Network enhanced Dynamic Multiproduct Formulas [2.3249255788359813]
We introduce a novel algorithm that combines tensor networks and quantum computation to produce results more accurate than what could be achieved by either method used in isolation.
Our algorithm is based on multiproduct formulas (MPF) - a technique that linearly combines Trotter product formulas to reduce algorithmic error.
We present a detailed error analysis of the algorithm and demonstrate the full workflow on a one-dimensional quantum simulation problem on $50$ qubits using two IBM quantum computers.
arXiv Detail & Related papers (2024-07-24T16:37:35Z) - Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs [1.0749601922718608]
Unitary and non-unitary diagonal operators are fundamental building blocks in quantum algorithms.
We introduce a general approach to implement unitary and non-unitary diagonal operators with efficient-adjustable-depth quantum circuits.
arXiv Detail & Related papers (2024-04-03T15:42:25Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.