Systematic study of High $E_J/E_C$ transmon qudits up to $d = 12$
- URL: http://arxiv.org/abs/2407.17407v1
- Date: Wed, 24 Jul 2024 16:42:58 GMT
- Title: Systematic study of High $E_J/E_C$ transmon qudits up to $d = 12$
- Authors: Z. Wang, R. W. Parker, E. Champion, M. S. Blok,
- Abstract summary: We analyze the trade-offs associated with encoding high-dimensional quantum information in fixed-frequency transmons.
Design high $E_J/E_C$ ratios of up to 325, we observe up to 12 levels on a single transmon.
Our high-fidelity control and readout methods, in combination with our comprehensive characterization of the transmon model, suggest that the high-$E_J/E_C$ transmon is a powerful tool for exploring excited states in circuit quantum electrodynamics.
- Score: 2.0415910628419063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Qudits provide a resource-efficient alternative to qubits for quantum information processing. The multilevel nature of the transmon, with its individually resolvable transition frequencies, makes it an attractive platform for superconducting circuit-based qudits. In this work, we systematically analyze the trade-offs associated with encoding high-dimensional quantum information in fixed-frequency transmons. Designing high $E_J/E_C$ ratios of up to 325, we observe up to 12 levels ($d=12$) on a single transmon. Despite the decreased anharmonicity, we demonstrate process infidelities $e_f < 3 \times 10^{-3}$ for qubit-like operations in each adjacent-level qubit subspace in the lowest 10 levels. Furthermore, we achieve a 10-state readout assignment fidelity of 93.8% with the assistance of deep neural network classification of a multi-tone dispersive measurement. We find that the Hahn echo time $T_{2E}$ for the higher levels is close to the limit of $T_1$ decay, primarily limited by bosonic enhancement. We verify the recently introduced Josephson harmonics model, finding that it yields better predictions for the transition frequencies and charge dispersion. Finally, we show strong $ZZ$-like coupling between the higher energy levels in a two-transmon system. Our high-fidelity control and readout methods, in combination with our comprehensive characterization of the transmon model, suggest that the high-$E_J/E_C$ transmon is a powerful tool for exploring excited states in circuit quantum electrodynamics.
Related papers
- Identification of soft modes in amorphous Al$_{2}$O$_{3}$ via first-principles [69.65384453064829]
Amorphous Al$_2$O$_3$ is a fundamental component of modern superconducting qubits.
We perform a first-principles study of amorphous Al$_2$O$_3$ and identify low-energy modes in the electronic and phonon spectra as a possible origin for TLSs.
arXiv Detail & Related papers (2025-02-20T18:43:24Z) - The quantromon: A qubit-resonator system with orthogonal qubit and readout modes [2.516358999617711]
We introduce a two-mode circuit, nicknamed quantromon, with two modes implementing a qubit and a resonator.
Experiments implemented in a hybrid 2D-3D cQED architecture demonstrate some unique features of the quantromon.
arXiv Detail & Related papers (2025-01-29T06:41:29Z) - Measurement-Induced Transmon Ionization [69.65384453064829]
We develop a comprehensive framework which provides a physical picture of the origin of transmon ionization.
This framework identifies the multiphoton resonances responsible for transmon ionization.
It also allows one to efficiently compute numerical estimates of the photon number threshold for ionization.
arXiv Detail & Related papers (2024-02-09T18:46:50Z) - High-sensitivity AC-charge detection with a MHz-frequency fluxonium
qubit [0.0]
We operate a heavy fluxonium with an unprecedentedly low transition frequency of $1.8mathrm$$.
By directly addressing the qubit transition with a capacitively coupled waveguide, we showcase its high sensitivity to a radio-frequency field.
This method results in a charge sensitivity of $33mumathrme/sqrtmathrmHz$, or an energy sensitivity (in joules per hertz) of $2.8hbar.
arXiv Detail & Related papers (2023-07-26T17:48:09Z) - Two-level approximation of transmons in quantum quench experiments [9.814009915583153]
We numerically investigate the accuracy and validity of the two-level approximation for the multilevel transmons based on the concept of Loschmidt echo.
We present the results for different system Hamiltonians with various initial states, qubit coupling strength, and external driving, and for two kinds of quantum quench experiments with time reversal and time evolution in one direction.
arXiv Detail & Related papers (2023-02-10T10:53:02Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Minimum optical depth multi-port interferometers for approximating any
unitary transformation and any pure state [52.77024349608834]
We show that any pure state, in any dimension $d$, can be prepared with infidelity $le 10-15$ using multi-port interferometers.
The schemes in [Phys. Rev. Lett. textbf73, 58 (1994) and Optica text3, 1460, 1460, only achieves an infidelity in the order of $10-7$ for block-diagonal unitary transformations.
arXiv Detail & Related papers (2020-02-04T15:40:49Z) - Non-degenerate parametric amplifiers based on dispersion engineered
Josephson junction arrays [0.0]
We show the continuous detection of quantum jumps of a transmon qubit with 90% fidelity in state discrimination.
A single amplifier device could potentially cover the entire frequency band between 1 and $10mathrmGHz$.
arXiv Detail & Related papers (2019-09-17T19:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.